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Abstract Robotic Development Environments (RDEs) have
come to play an increasingly important role in robotics re-
search in general, and for the development of architectures
for mobile robots in particular. Yet, no systematic evalua-
tion of available RDEs has been performed; establishing a
comprehensive list of evaluation criteria targeted at robotics
applications is desirable that can subsequently be used to
compare their strengths and weaknesses. Moreover, there
are no practical evaluations of the usability and impact of a
large selection of RDEs that provides researchers with the
information necessary to select an RDE most suited to their
needs, nor identifies trends in RDE research that suggest
directions for future RDE development.

This survey addresses the above by selecting and de-
scribing nine open source, freely available RDEs for mobile
robots, evaluating and comparing them from various points
of view. First, based on previous work concerning agent sys-
tems, a conceptual framework of four broad categories is
established, encompassing the characteristics and capabili-
ties that an RDE supports. Then, a practical evaluation of
RDE usability in designing, implementing, and executing
robot architectures is presented. Finally, the impact of spe-
cific RDEs on the field of robotics is addressed by providing
a list of published applications and research projects that give
concrete examples of areas in which systems have been used.
The comprehensive evaluation and comparison of the nine
RDEs concludes with suggestions of how to use the results
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of this survey and a brief discussion of future trends in RDE
design.
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1 Introduction

Robots, unlike many software agents, operate under real-
world, real-time constraints where sensors and effectors with
specific physical characteristics need to be controlled. To fa-
cilitate research in autonomous robotics and help architecture
designers in managing the complexity of embodied agents,
several robot development environments (RDEs) have been
developed that support various aspects of the agent develop-
ment process, ranging from the design of an agent architec-
ture, to its implementation on robot hardware, to executing
it on the robot.

While several frameworks for comparing agent systems
have been proposed, some of them specifically for RDEs
(see Section 3), there is currently no survey available that (1)
provides a set of conceptual RDE features comprehensive
enough to serve as a basis for a conceptual evaluation that
does justice to the specific aims with which most RDEs have
been developed, (2) applies the conceptual criteria system-
atically to a large selection of RDEs, (3) augments the the-
oretical evaluation with a practical usability evaluation that
includes architecture design, implementation, and execution
within each RDE on a robot, with special emphasis on ease of
use and performance, (4) includes the impact of the RDE in
terms of categorized published work using it, an indicator of
an RDE’s prevalence in and influence on the robotics field,
and (5) provides a principled way of combining the three
evaluations (conceptual, practical, and impact) to obtain an
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overall measure of how well an RDE can be adapted to the
particular needs of researchers choosing among available
systems or RDE developers considering future directions of
system development.

This paper addresses all five points. Starting with a set of
constraints used for the selection of RDEs to be examined
(including a rationale for excluding certain RDEs), Section 2
introduces nine general purpose, freely available RDEs.
Section 3 reviews previous work concerning agent system
and RDE comparisons, establishing four categories of
criteria corresponding to typical stages of application
development for autonomous mobile robots. The RDEs are
then systematically evaluated according to the criteria in
Section 4. Section 5 contains a practical evaluation based on
designing, implementing, and running a simple architecture
and some more complex architectural components in each
RDE. The subsequent discussion in Section 6 ties together
the conceptual and practical evaluations and augments them
with one possible evaluation of the impact of each RDE,
also suggesting a principled method for using the results
of this survey by both researchers and RDE developers.
Section 7 summarizes the results and extrapolates to identify
some future trends in RDE development.

2 Autonomous mobile robot systems

A complete accounting and systematic comparison of all
RDEs is clearly impossible within the confines of a survey
paper, not only because of the number of RDEs available
and the release of new systems, but also due to the scope
of robotics as a discipline. To make the task manageable,
a group of qualifying constraints is used to limit the selec-
tion to a specific subset of representative RDEs. First, we
consider only open source packages unencumbered by li-
censing costs and available for free download. CyberBotics
Webots (Michel, 2004; Webots, 2005), White Box Robotics
(WhiteBoxRobotics, 2005), and Evolution Robotics’ ERSP
(ERSP, 2004) are excluded as commercial packages. Also ex-
cluded are BERRA (Lindstrom et al., 2000) and CLARAty
(Volpe et al., 2001; Nesnas et al., 2003, 2006) due to down-
load unavailability. Systems are also required to generalize
beyond specific hardware platforms, but provide more speci-
ficity than a general framework. So, while Lego Mindstorms
(LEGO, 2005) is a widely-used robotics platform with many
related packages available, we do not consider it (or projects
such as CotsBots (Bergbreiter and Pister, 2003; CotsBots,
2005) or Modular Controller Architecture (MCA2, 2005))
due to specificity in relation to a single platform or custom
hardware construction. Conversely, LAAS’s GenoM (Fleury
et al., 1997; Mallet et al., 2002; Fleury and Mallet, 2004)
is excluded as a framework for the generic definition of
robot components. Finally, there must be at least one cohe-

sive application developed in the system (i.e., a repository of
components is not considered for inclusion). To our knowl-
edge, this requirement is not met by Orocos (Bruyninckx,
2001; OROCOS, 2005), The Rossum Project (Lucas, 2004),
Nomadic (Sprouse, 2005), Dave’s Robotic Operating Sys-
tem (Austin, 2004), the Open Automation Project (Walters,
2003), or YARP (Metta et al., 2006). Similarly, this excludes
some projects that, at the time this research was begun, were
either just being developed (e.g., Orca Brooks et al., 2005;
Orca, 2005) or in a pre-release stage (e.g., the RObotics and
Learning Environment (ROLE) (Heckel, 2005)).1

Given the above constraints, nine RDEs have been se-
lected,2 listed in Table 1 The following synopses give an
overview of the systems’ use and operation, including a
broad system description, the stated purpose of the system,
the platforms on which it runs, the release version, and a
summary of notable features. To characterize the strengths
of the systems more completely, the end of each subsection
lists publications from particular robotics research subareas,
determined by the presentation groupings established in the
2001–2005 Proceedings of the IEEE International Confer-
ence on Robotics and Automation (ICRA), which have been
divided into three categories:

� Single robot: SLAM, Planning/Navigation, Learning,
Hierarchical Behavior, and Education

� Human-Robot Interaction: Task Allocation, Learning, and
Assistive Robotics

� Multi-robot: Sensing, Exploration, Mapping, Localization,
Planning, Coordination, Formation, and Task Allocation

Only a single publication represents a sub-area; citations
are also used in evaluating an RDE’s impact in Section 6.

2.1 TeamBots

TeamBots (Balch, 2004; Balch and Ram, 1998) (which su-
persedes JavaBots) is a Java-based collection of application
programs and Java packages for multi-agent mobile robotics
research. Although it is no longer under active development
(the most recent version available, 2.0e, was released in April
2000), it is included due to its appearance in both Jia et al.
(2004) and Orebäck and Christensen (2003) and because it
has found wide use in both research and education. The main
author of TeamBots is now affiliated with the laboratory that
develops MissionLab (see Section missionlab-desc); for the
above reasons, this description will be brief.

A highly touted feature of TeamBots, stemming from a
strict separation of hardware interfaces and control code, is

1 Exclusion of the listed systems is only indicative of not meeting the
specified constraints; further examination is encouraged.
2 Almost all of the selected RDEs are under constant revision and more
recent versions might be available.
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Table 1 RDEs selected for this survey

RDE Originating institution More information

TeamBots, v.2.0e Carnegie-Mellon University http://www.teambots.org/
ARIA, v.2.4.1 MobileRobots, Inc http://robots.mobilerobots.com/
Player/Stage, v.1.6.5, 1.6.2 University of Southern California http://playerstage.sourceforge.net/
Pyro, v.4.6.0 Bryn Mawr College http://emergent.brynmawr.edu/pyro/?page = Pyro

Swarthmore College
University of Massachusetts
SRI International

CARMEN, v.1.1.1 Carnegie-Mellon University http://carmen.sourceforge.net/
MissionLab, v.6.0 Georgia Institute of Technology http://www.cc.gatech.edu/aimosaic/robot-

lab/research/MissionLab/
ADE, v.1.0beta University of Notre Dame http://ade.sourceforge.net/
Miro, v.CVS-March 17, 2006 University of Ulm http://smart.informatik.uni-ulm.de/MIRO/
MARIE, v.0.4.0 Université de Sherbrooke http://marie.sourceforge.net/
FlowDesigner, v.0.9.0 http://flowdesigner.sourceforge.net/
RobotFlow, v.0.2.6 http://robotflow.sourceforge.net/

the use of the same control code both in simulation and for
an actual robot. While the only robot platforms supported
are Probotic’s Cye and Nomad 150 robots, there are many
example simulation environments and control systems avail-
able. The simulator was developed to be extremely flexible,
supporting multiple, heterogeneous robot platforms and con-
trol systems simultaneously. In addition, the Clay package
allows hierarchical behavior specification, specifically tar-
geting schema-based control. Inter-robot communication is
supported via sockets and serial ports only. A notable inclu-
sion is the Java CMU-Vision package, which supports frame
captures and blob-tracking.

TeamBots publications include those from the hierarchi-
cal behavior (Balch, 2000) and education (Balch, 2002) sub-
areas.

2.2 Advanced robotics interface for applications (ARIA)

ARIA (MobileRobots, Inc., 2005; LaFary and Newton, 2005),
the base software that comes packaged with the purchase of
MobileRobots (neé ActivMedia) robots, is a set of C++
classes available for free download. At the lowest level,
ARIA provides system architecture capacities; that is, soft-
ware that describes the structure of a robot (including its
sensors, effectors, and physical specifications) and imple-
ments the low-level interaction between software and hard-
ware components. At a higher level of abstraction, it also
includes some sensory interpretation functionality, basic ac-
tions (analogous to behaviors), and an elementary action
resolver.

Although freely available, ARIA is a product of MobileR-
obots, Inc. and thus only supports MobileRobots platforms,
using robot parameter files as the means of defining the
characteristics of a robot. This includes information about
the robot body (e.g., the robot’s radius), the sensors (e.g.,

the number and position of sonar), and the effectors (e.g.,
the maximum velocity). The parameters are used by ARIA
for various calculations (e.g., the “RobotRadius” parame-
ter is used to determine the robot’s turn limits). In support
of distributed computing, ARIA provides the ArNetwork-
ing package as a wrapper around socket communications.
In addition, the Simplified Wrapper and Interface Generator
(SWIG, 2004) development tool is used to provide Java and
Python support.

Supporting software is available, but is limited in some
cases by licensing or purchase requirements. The Mo-
bileSim 2-dimensional simulator, a modified version of
Player/Stage’s Stage simulator (see Section 2.3), is freely
available. A demo version of the ActivMedia Color Track-
ing Software (ACTS) is available for free download, but
has restricted functionality that disallows integration with
ARIA (not true of the licensed version). Additional open
source software includes the ArSpeech components that pro-
vide interfaces to Sphinx speech recognition and both Festi-
val and Cepstral speech production packages, SonARNL for
sonar-based localization, Mapper3 Basic for map creation
and editing, and VisLib for single camera object tracking.
Also available, but restricted to license and/or purchase are
MobileEyes (which provides a remote robot display and con-
trol GUI), ARNL (which provides laser-based mapping and
localization), and Mapper3 (which augments the basic map-
per package with laser support and automated map creation
from sensor logs).

There are no publications available from projects that have
used ARIA.3

3 While publications exist for ARIA’s ancestral software, the authors
were explicitly requested to not refer to it.
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2.3 Player/stage

The Player/Stage (Gerkey et al., 2001, 2003, 2005) project is
designed to be a programming interface, specifically avoid-
ing being a development environment. Rather than treating
a robot as the primary unit of agency, it instead focusses on
devices, or the various sensors and effectors. A “collection”
of devices is typically, although not necessarily, located on
a single robot. Supported platforms include MobileRobots,
RWI/iRobot’s RFLEX-based, Segway, Acroname, Botrics,
Evolution Robotics, and K-Team robots, while components
that are packaged along with the download include vector
field histogram goal-seeking/obstacle avoidance, adaptive
Monte-Carlo localization, and a wavefront propagation path
planner and interfaces for ACTS (see Section 2.2), CMVi-
sion, Festival, a service discovery mechanism, and others.

In this software, Player refers specifically to the device
and server interface. Devices are independent of one another
and “register” with a Player server to become accessible to
clients. Each client uses a separate socket connection to a
server for data transfer, thus preserving concurrent operation
of devices and the servicing of multiple requests. Minimal
constraints are placed on the use of devices; in a very real
sense, usage is only a communication protocol, leaving the
client the freedom (and by extension, the work) of design-
ing and implementing a control architecture. Stage, which
is the second part of the software, is a device simulator.
Client control code uses the same programming interface
when used in conjunction with either simulated or physical
devices.

A stated design goal of the device model used in
Player/Stage is the separation of interface and function. The
fact that servers communicate via a socket interface means
that client programs can be written using any language with
socket support. According to Gerkey et al. (2003), currently
available libraries include those written in C, C++, Tcl,
Python, Java, and Common LISP. Due to the prevalent use
of socket communication, the Player system inherently fits
the distributed computing paradigm. Client code is able to
operate on any host that has network connectivity, enabling
location independence. A side effect of the device model and
its networked basis is that combinations of devices can be
formed to create novel types of agents (e.g., one composed
of only sonar devices from many different robots). An ad-
ditional feature of the device model is that the frequency
of sensor and effector updates are independent, providing
clients the ability to make full use of the data generated by
devices that operate at a high frequency, while not being
hindered by those that are slower.

Stage is a graphical, 2-dimensional simulator that models
devices in a user defined environment. Specifically designed
to support research in multi-robot systems through its use
of socket-based communication, it also forms the founda-

tion for ARIA’s MobileSim simulator. In addition to Stage,
a high-fidelity, 3-dimensional simulator called Gazebo is
available. In both cases, client code uses the same inter-
face on real robots as in the simulator. The authors mention
that the device model makes it easy to simulate non-existent
devices (for instance, a type of sonar that penetrates walls
to some extent) for further research in device design and
use.

Player/Stage publications include those from the SLAM
(Wolf and Sukhatme, 2005), learning (Provost et al., 2004),
education (Matarić, 2004), HRI task allocation (Tews
et al., 2003), multi-robot sensing (Jung and Sukhatme,
2002), multi-robot exploration (Howard et al., 2002), multi-
robot mapping (Howard et al., 2004), multi-robot localiza-
tion (Howard et al., 2003), multi-robot planning (Howard
et al., 2004), multi-robot coordination (Jones and Matarić,
2004), multi-robot formation (Fredslund and Matarić, 2002),
and multi-robot task allocation (Gerkey and Matarić,
2002).

2.4 Python robotics (Pyro)

Pyro (Blank et al., 2003, to appear; Pyro, 2005) is a robot
programming environment aimed at, but not limited to, ed-
ucational purposes, leading to specific choices in its design.
One goal is to provide a top-down approach to the design
of controllers, insulating students from low-level details of
implementation while preserving access to the low-level if
it is desired. Some of the abstractions include: range sen-
sors, robot units, sensor groups, motion control, and devices,
which encapsulate lower levels. This includes “wrapping”
Player/Stage (see Section 2.3) and ARIA (see Section 2.2)
functionality, so that any component written for those sys-
tems are also available to Pyro users. A large selection of
platforms are supported, including K-Team Kheperas and
Hemission, MobileRobots Pioneer, Handyboard, Sony Aibo,
and all robots supported by Player/Stage (see Section 2.3).

Educational modules exist to demonstrate control
paradigms (e.g., neural networks, evolutionary algorithms,
vision processing, and reactive, behavior-based, finite state
machines, etc.). Python, an interpreted language, was chosen
as the basis of the system due to its ease of use for beginning
students, while permitting more knowledgeable designers to
write more advanced code. While it is acknowledged that
using an interpreted language leads to slower operation, the
trade-off between usability and performance is consciously
made. Construction of graphical visualization of robot oper-
ation are explicitly supported through the use of pre-defined
facilities and Python’s OpenGL interface. Another goal is to
design control code that operates on many different robots
with no modification. An example of this is the use of
“robot units” that replace traditional measurements such as
meters.

Springer



Auton Robot (2007) 22:101–132 105

Pyro publications include those from the learning (Blank
et al., 2002), education (Blank et al., to appear), and HRI
task allocation (Desai and Yanco, 2005) subareas.

2.5 Carnegie mellon robot navigation toolkit (CARMEN)

CARMEN (Montemerlo et al., 2003a, b) is an open source
collection of (mobile) robot control software written in the C
programming language that is meant to provide a “consistent
interface and a basic set of primitives for robotic research”.
Oriented towards single robot control, it uses a three layer
agent “architecture,” in which the first layer is the hard-
ware interface, providing low-level control and integration
of sensor and motion data, the second layer is concerned
with basic robot tasks such as navigation, localization, ob-
ject tracking, and motion planning, and the third layer is the
user-defined application, which relies on the primitives of
lower layers. Modularity is a primary concern, supported by
the Inter-Process Communication System (IPC) communi-
cation protocol/software (discussed in more detail below).
Besides supporting a number of robot platforms (including
MobileRobots, Nomadic Technologies Scout and XR4000,
Segway, iRobot ATRV, ATRVjr, and B21R) and navigation
primitives (map-making, Monte-Carlo particle filter local-
ization (Thrun et al., 2000), and Markov decision process
path planning (Konolige, 2000)), CARMEN also provides
configuration tools, a simulator, and graphical displays and
editors.

IPC (Simmons, 1994, 2004) provides high-level support
for connecting processes using TCP/IP sockets and send-
ing data between processes, including opening and clos-
ing sockets, registering, sending, and receiving messages,
which may be anonymous publish/subscribe or client/server
type communications. The IPC library contains functions
to marshall (serialize) and unmarshall (de-serialize) data,
handles data transfer between machines with different En-
dian conventions, invoke user-defined handlers when a mes-
sage is received, and invoke user-defined callbacks at set
intervals. In essence, IPC performs a function similar to
a naming service for components; besides providing the
means to define message abstractions used for commu-
nication over a network, it also encourages extensibility
(in that components are self-contained) and fault-tolerance
(in that failure of a component ceases communication,
but does not actively interrupt other components in the
system).

CARMEN components generally take the form of a sin-
gle executable, such as pioneer (for a MobileRobots Pio-
neer robot), laser (for a SICK laser range finder), or localize
(for robot localization using a pre-made map). Particular
platform definitions are contained in “base” specifications,
which are then abstracted to a generic “robot” configura-
tion that includes basic parameters such as body length and

width, sonar offsets, maximum velocities, etc. Parameters
for each component are stored in a human readable text file
repository, but a graphical editor can be used to modify pa-
rameters at run-time. In addition, each component relies on
a set of IPC message definitions to which other components
can subscribe, allowing component distribution through an
IPC server.

CARMEN publications include those from the SLAM
(Thrun et al., 2000), learning (Osentoski et al., 2004), HRI
assistive robotics (Pineau et al., 2002), and multi-robot co-
ordination (Simmons et al., 2000) subareas.

2.6 MissionLab

MissionLab (MacKenzie et al., 1997; MissionLab, 2003) is a
set of software tools for executing military-style plans using
individual or teams of real and simulated robots. Developed
as part of the DARPA Mobile Autonomous Robot Software
(MARS) project, the main stated goal is to control the
motion of robots in highly dynamic, unpredictable, and
possibly hostile environments. Collaboration and coordina-
tion of robot teams is based on the Societal Agent theory,
which views abstract “assemblages” of agents as agents
themselves and whose behavior, in turn, is the aggregate
of coordinated “primitive” behaviors of “atomic” agents.
Assemblages are hierarchical, while behavior coordination
is achieved through finite state automata (either competitive
or temporally sequenced) or vector summation cooperation.

The Configuration Description Language (CDL) is used
to recursively define abstract societal agents (called config-
urations), usually accomplished using the graphical CfgEdit
tool. A configuration can be bound to a specific set of robots
and devices; robot choices include MobileRobots Pioneer,
iRobot ATRVjr and Urban, Evolution Robotics ER-1, and
Nomad 150/200. CDL is compiled to Configuration Network
Language (CNL) code, which is then compiled to C++ code
and finally compiled to machine code, resulting in a robot
executable. The executable contains a communication mod-
ule (called HClient) to interface with an HServer, an abstract
control interface used for all robot hardware via IPT commu-
nication software. (IPT supports distributed computing and
is related to the IPC communication software, described in
Section 2.5; both are derived from the Task Control Architec-
ture (TCA, Simmons, 1994) project.) Developers also have
the option of using the higher level Command Description
Language (CMDL) to describe robot missions, which is a
mechanism for providing high-level input to robot behaviors.

As a primary concern of MissionLab is usability, the
graphical interface is quite extensive, allowing non-experts
to write control code without any programming. Logging
consists of writing a robot’s position, velocity, heading, and
the current state of the robot with respect to time to a disk file,
while debugging toggles are used to display program output
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to a console. A unique feature relative to other systems is the
inclusion of “Motivational Variables” (anger, fear, hunger,
curiosity) that simulate emotionality. Developers can also
assign user-defined “Personalities” to robots. Finally, there
is an extensive set of components available with Mission-
lab, including a case based reasoner, Q-learning, graphical
behavior building tool, D∗ Lite planner, and human/robot
interaction interfaces.

MissionLab publications include those from the learning
(Arkin et al., 2003), hierarchical behavior (MacKenzie and
Arkin, 1993), HRI task allocation (MacKenzie and Arkin,
1998), multi-robot planning (Endo et al., 2004), multi-robot
coordination (MacKenzie et al., 1997), multi-robot formation
(Balch and Arkin, 1999), and multi-robot task allocation
(Arkin et al., 1999) subareas.

2.7 APOC development environment (ADE)

ADE (Andronache and Scheutz, 2004a, b; Scheutz, 2006)
is a programming environment that combines (1) support
for developing and implementing agent architectures with
(2) the infrastructure necessary for distributing architectural
components. An explicit goal is to combine features of
multi-agent systems (by treating architectural components
as “agents” in a MAS-sense) with those of a programming
environment and toolkit for complex agent design and im-
plementation. ADE is a Java implementation of the APOC
(Activating, Processing, Observing Components) (Scheutz
and Andronache, 2003; Scheutz, 2004) universal agent
architecture framework, which provides arbitrary levels of
(possibly hierarchical) component abstraction and intercon-
nection. Communication among ADE components relies
on Java’s Remote Method Invocation (RMI) facilities. ADE
provides infrastructural components for an enhanced naming
service, connection mediation and monitoring, security
features (access control and authentication), and the ability
to store the run-time state of the system, which in turn allows
for the detection and recovery from component failures.

While ADE is limited to MobileRobots robots and Arrick
Robotics’ Trilobot, a set of abstractions for typical robotic
sensors and effectors provide the means for extending
support to other platforms. Configuration files can take the
form of either text or XML files and include both an abstract
architecture description and/or the run-time specification
of component distribution. Graphical representations of
individual components exist, accessible via a distributed,
multi-user GUI, which provides a view of the complete agent
architecture and the means to control individual components.
Logging facilities allow any component in an ADE system
to write to multiple files. ADE provides several predefined
components including facilities for behavior definition,
vision processing, speech recognition and production, a

general-purpose rule interpreter, a Prolog interface, and
“wrappers” to incorporate external software. It also includes
a Java implementation of a Player (see Section 2.3) client
that interfaces with the Stage 2-dimensional robot simulator
and other Player/Stage components, in addition to an
interface to the simulator packaged with the now defunct
(Saphira Konolige et al., 1997; Konolige, 2002) system.

ADE publications include those from the plan-
ning/navigation (Kramer and Scheutz, 2003), hierarchical
behavior (Scheutz and Andronache, 2004), HRI task al-
location (Scheutz et al., 2004), assistive robotics (Scheutz
et al., 2006), multi-robot sensing (Andronache and Scheutz,
2004a), and multi-robot coordination (Scheutz, 2006).

2.8 Middleware for robots (Miro)

Miro (Utz et al., 2002; Miro, 2005) is a distributed, ob-
ject oriented framework for mobile robot control that is
meant to facilitate heterogeneous software integration and
foster portability and maintainability of robot software. Core
components have been developed in C++ for Linux based
on Common Object Request Broker Architecture (CORBA)
technology using the adaptive communication environment
(ACE, Schmidt, 1994) as its communication framework. Due
to the programming language independence of CORBA, fur-
ther components can be written in any language and on any
platform that provides CORBA implementations.

Miro currently supports three platforms: iRobot B21,
MobileRobots Pioneer, and the custom-built Sparrow. Ab-
straction interfaces include odometry, motion, rangesensor
(sonar, infrared, bumper, laser), stall, video, pantilt, GUI but-
tons, and speech. Components exchange data based on sub-
scriptions, which allow for event driven notification. Defined
messages include those for odometry, rangesensor (scan-
event, groupevent, bunchevent), sonar, infrared, bumper,
stall, and GUI buttons. Miro includes a “behavior engine”
for reactive behavior specification, which allows hierarchi-
cal decomposition of timed, event and task behavior sets
into “policies”. There are two types of policy transitions,
local and global, that can be edited via a graphical inter-
face; global policies preempt behaviors, local do not. The
configuration of hardware, data subscriptions, and logging
specification is stored in XML files. Two types of logging
are defined, “log levels” and “log categories”, that allow de-
velopers to vary the granularity of log data, while a graphical
LogPlayer allows the replay of logged data.

Miro publications include those from the SLAM (Kraet-
zschmar et al., 2004), planning/navigation (Kraetzschmar
et al., 2000), learning (Fay et al., 2004), hierarchical
behavior (Utz et al., 2005), HRI assistive robotics (Gassull,
2001), multi-robot sensing (Utz et al., 2004), and multi-robot
coordination (Utz et al., 2004) subareas.
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2.9 Mobile and autonomous robotics integration
environment (MARIE)

MARIE (Côté et al., 2004, 2006; Côté, 2005) is a pro-
gramming environment that is specifically designed with
the integration and distribution of robot applications, com-
ponents, and tools in mind. For brevity, “MARIE” is used
throughout this description and the rest of the survey to
signify the MARIE software and the related FlowDesigner
(Valin and Létourneau, 2004) and RobotFlow (Michaud
and Létourneau, 2004) packages (described below), unless
clarification is necessary. MARIE is implemented in C++
and the integration aspect of MARIE proper uses (but is
not dependent upon) the Adaptive Communication Environ-
ment (ACE, Schmidt, 1994) communication framework. Fol-
lowing the mediator design pattern (Gamma et al., 1994),
MARIE provides a centralized component that connects a
variety of (possibly different) software. There are four func-
tional components: application adapters, communication
adapters, communication managers, and application man-
agers. Application adapters act as proxies between the central
component and applications. Communication adapters trans-
late data between application adapters, while communication
managers create and manage the links. Finally, application
managers coordinate system states and configure and control
system components on any one processing node. In keeping
with the aim of integrating software, components have been
developed for Player/Stage (see Section 2.3), CARMEN (see
Section 2.2), and ARIA (see Section 2.2).

FlowDesigner is a data-flow processing library coupled
with a graphical display that allows developers to create
reusable “software blocks” linked together in a (possibly
hierarchical) network. Available libraries include support
for signal processing, audio processing (DSP), vector quan-
tization, neural networks, fuzzy logic, an Octave plug-in,
and RobotFlow. RobotFlow is a mobile robotics toolkit for
FlowDesigner that includes support for MobileRobots Pio-
neer2 robots and other hardware devices, behaviors, finite
state machines, vision processing (color training, tracking,
etc.) and the interfaces for use with MARIE.

MARIE publications include those from the plan-
ning/navigation (Beaudry et al., 2005), education (Michaud,
2005), HRI assistive robotics (Labonté et al., 2005), multi-
robot localization (Rivard, 2005), multi-robot coordination
(Guilbert et al., 2003), and multi-robot formation (Lemay
et al., 2004) subareas.

3 A conceptual framework for comparing RDEs

Several comparisons of agent systems and agent develop-
ment environments have been proposed in the recent litera-
ture. For software agents, they are typically concerned with

various aspects of multi-agent systems (MAS), including
comparing agent platforms (Altmann et al., 2001; Nguyen
et al., 2002; Laukkanen, 1999; Nowostawski et al., 2000;
Ricordel and Demazeau, 2000), agent development kits (Bit-
ting et al., 2003), mobile agent systems (Silva et al., 2001),
or agent environments (Eiter and Mascardi, 2002). There are
also comparisons of general agent systems and agent archi-
tectures per se (Sloman, 1998; Logan, 1998; Sloman and
Scheutz, 2002). Comparisons that concern robotic agents
in particular have addressed mobile robotic architectures
(Orebäck and Christensen, 2003) and robot programming
environments (MacDonald et al., 2003; Jia et al., 2004; Biggs
and MacDonald, 2003). Common to all is the need to estab-
lish an appropriate set of criteria that serves as a basis for the
comparison. Clearly, the choice of criteria is critical, for, as
pointed out in Ricordel and Demazeau (2000), “any criteria
is relevant to a specific outside need.”

We briefly review some of this prior work to situate our
proposed evaluation criteria, giving a general overview of
the conceptual breakdown in each and why each proves in-
sufficient for the purposes of this paper. To avoid ambiguities
and equivocations among the different terms used, we will
adhere to the following terminology for the rest of this paper:

� Platform: the hardware on which an application will be
executing; this includes the sensors, actuators, comput-
ers, operating system(s), and other hardware or software
intimately tied to hardware.

� Component: a functionally independent part of an agent
or system.

� Architecture: the structure and interaction of components;
if necessary, a distinction will be made between system
and agent architectures.

� Agent: the sum of the software and hardware required for
an individual robot to perform its task. In particular, we
will not consider infrastructure or strictly software agents
(e.g., a naming service or communication agent) as agents
per se, as is done in the field of multi-agent systems. These
are instead considered functional components that are part
of the broader environment or application.

� Programming environment: the tools, infrastructure, and
components that are not left for implementation by the
developer. The term system will be used interchangeably
in this context.

The most general and, for our purposes, pertinent, frame-
work is Eiter and Mascardi (2002). Although founded in
MAS research, the classification is intended to be compre-
hensive, establishing a framework for all types of agent sys-
tems. Additionally, the authors provide a practical method
for choosing an appropriate system for a task selected by
an application designer. Criteria are divided into five cate-
gories: (1) agent attitudes, (2) software engineering support,
(3) implementation concerns, (4) technical issues, and (5)
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economical aspects.4 While the software engineering, im-
plementation, and technical issues categories usually have
a prominent role in discussions of RDEs, the agent atti-
tudes aspect is often omitted–not because it is unimportant
or ignored, but because features therein often form the task,
or object, of investigation. Yet, according to Eiter, the at-
titudes category is comprised of features that discriminate
between agent and non-agent software: they are either basic
(i.e., “close to the very core of agenthood”) or advanced (i.e.,
“desirable but not of central interest”). Hence, an agent devel-
opment environment (and by extension an RDE) should, at
least in part, be evaluated with respect to the degree to which
it supports these attitudes. While Eiter and Mascardi’s cat-
egorization is comprehensive, it lacks some details of con-
siderable importance for evaluating RDEs. In fact, this is
explicitly acknowledged with the disclaimer, “other features
and criteria should be taken into account” for the unique is-
sues that arise in the development of physical agents (e.g.,
support for devices, real-time operation, etc.).

In their framework proposal, Jia et al. (2004) isolate three
high-level categories for analysis of an RDE: (1) openness,
(2) abstraction, and (3) modularity. Openness refers to ex-
tensibility: a programming environment should support the
addition and evolution of hardware and software. Abstrac-
tion forms the basis on which openness is built, providing
a well-defined application programming interface (API) that
allows a developer to work at a level beyond the hardware
(see also Vaughan et al., 2003). Different from abstraction,
which is focussed on hardware, modularity concerns soft-
ware, promoting good design and reusability. While these
three categories address the design and implementation of
autonomous mobile robotic applications (as demonstrated
by their in-house development of the Frontier-1 robot), they
are too general to address specific concerns of RDEs (e.g.,
real-time support, hardware-dependence of a robotic plat-
form, debugging tools, etc.).

MacDonald et al. (2003) give a detailed and comprehen-
sive description of RDE features in three categories: (1) robot
programming (both at the system and task level, which en-
able programmers to describe robot behavior), (2) infrastruc-
ture (which supports the execution of behavior descriptions),
and (3) human-robot interaction (HRI, which allows inter-
action with the robot programming area; see also Biggs and
MacDonald, 2003). The proposed features will be largely
included in our comparison, but there are some issues con-
cerning the analysis, organization, and application to various

4 Eiter’s economical aspects category will not be considered here, ex-
cept for the documentation criterion, as the selected RDEs are both
open source and research-oriented. Related considerations, such as the
cost of application development, RDE maintenance or modification,
training, etc. are, however, addressed by the usability evaluation in
Section 5.

aspects of RDEs. For one, the boundaries of the categories
overlap to such an extent as to be unclear. For instance, infras-
tructure conflates the facilities provided by the environment
with both the programming and the agent architecture cate-
gories. Similarly, the broad scope of the HRI (human/robot
interaction) category largely overlaps the robot programming
category, yet contains individual features that are too specific
for a general system comparison (i.e., excluding systems that
are not especially intended nor designed for HRI). Moreover,
the proposed categorization is not structured in a way that
is easily amenable to a systematic comparison (e.g., concep-
tually different items are subsumed under the rubric “robot
programming”).

The study closest in intent to this survey is Orebäck and
Christensen (2003), which attempts to establish the char-
acteristics of a “common software architecture” for mo-
bile robot systems. In particular, seven categories (hardware
abstraction, scalability, overhead, control model, software,
tools and methods, and documentation) are proposed as a
basis for comparing RDEs, covering an extensive range of
features. However, while the proposed framework is gener-
ally suitable, the actual comparison is limited to only three
RDEs (Balch, 2004; Konolige et al., 1997), and BERRA
(Lindstrom et al., 2000)) and does not adhere strictly to the
conceptual framework. Rather, criteria are grouped into six
areas that mostly, but not always, correspond to the categories
as defined, in some instances leaving out or introducing new
criteria.

While all of the above studies agree that the main purpose
of an RDE is to provide appropriate tools and abstractions
that help the agent designer, they fail to provide a compre-
hensive, yet succinct conceptual framework that allows for a
systematic comparison of RDEs. Based on the three typical
stages in the development process of a robotic agent archi-
tecture5 (design, implementation, and execution), we propose
four categories of criteria for RDE comparison, categorized
in terms of:

F1: Specification, which includes formalisms, methodolo-
gies, and design tools,

F2: Platform support, which is related to the hardware and
its low-level interface (e.g., the operating system),

F3: Infrastructure, which refers to components and capa-
bilities that are part of the RDE, but not the “agent
architecture proper,” and

F4: Implementation, which includes aspects of application
development (including predefined components used in
an agent architecture).

Of the four categories, three reflect features relevant to
specific development stages (e.g., specification features are

5 Our stages are similar to Ricordel and Demazeau (2000), although we
subsume the analysis category as part of the design stage.
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central to design, implementation features pertain to imple-
mentation, as the name suggests, and platform features play
a role in the execution). The fourth category, infrastructure,
is added to explicitly distinguish aspects of an RDE that are
separate and distinct from the agent architecture (e.g., distri-
bution mechanisms that are integral to system operation, yet
usually transparent to the agent designer).

We note in advance that the four categories are comprised
of features that an RDE objectively has or does not have, with
an emphasis on the software engineering aspects of its func-
tional characteristics and capabilities. These criteria alone
are not sufficient for a full evaluation of an RDE and are
supplemented with additional criteria in Sections 5 and 6.
The different types of evaluation can be distinguished by
an identifying prefix; criteria in this section are denoted
by F, followed by a category and item number. It is cru-
cial to note that even though the expanded criteria list pro-
vides a comprehensive foundation for RDE evaluation, it is
impossible in principle to address every concern a devel-
oper might have. A remedy for the situation is discussed in
Section 6.

F1: Specification

The specification of a robotic agent or application occurs
in the design stage and concerns issues such as the appli-
cation domain(s), software engineering, and determination
of an appropriate agent architecture. To preserve the focus
on RDEs, the criteria presented are somewhat broad, but are
sufficient to address the prevailing concerns.

F1.1: Architectural Primitives. An RDE provides various
types of predefined functional component and/or
knowledge primitives useful in robotic applications
(e.g., behaviors, methods of control, tasks, objects,
etc.), or the means to create, organize, and manipulate
them.

F1.2: Software engineering. Software engineering support
promotes the creation of high-quality software. En-
abling modularization and code reuse, it can be ac-
complished through the use of stated design princi-
ples, explicit frameworks or tools, methodologies, or
formalisms, and includes application verification, pro-
totyping, and the abstractions mentioned in Jia et al.
(2004), Orebäck and Christensen (2003) and Vaughan
et al. (2003).

F1.3: Architecture neutrality. An RDE may be associated
with a particular theoretical foundation that promotes
a specific agent/application architecture, separate from
implementational concerns. Alternatively, it may be
architecture neutral, leaving the choice to the designer
or even providing the means to compare application
implementations using different agent architectures.

F2: Platform support

Robotic applications necessarily incorporate real-world sen-
sors and effectors; thus, they require a more diverse set of
hardware than software-only systems. The principles of ab-
straction, modularity, and openness, as put forth in Jia et al.
(2004), are of particular importance to this category, promot-
ing application use across varying platforms.

F2.1: Operating system. An RDE may be compatible with
one or many operating systems, but must be compat-
ible with the designer’s choice. This can become a
major obstacle when certain libraries or components
are implemented only for a particular operating sys-
tem.

F2.2: Hardware support. “Hardware support” refers to the
variety of sensors and effectors that are available in
an RDE, such as cameras, sonar, and laser devices.
Since the number of standard (that is, common and
non-custom) devices is limited and widely used on
different platforms, we will refer instead to particular
robot manufacturers. In support of increased modular-
ity, ease of device modification, and addition of cus-
tom devices, a hierarchy of device abstraction is often
specified, allowing control code to be easily ported and
executed on different robots.

F2.3: Simulator. Simulation of the physical world allows de-
velopers to test applications, model currently unavail-
able hardware, and replay actual application execution.
Simulators can be low- or high-fidelity, approximating
an environment to some lesser or greater degree, and
can also be two- or three-dimensional. Some simula-
tors have the ability to include multiple robots in a
single simulation or to mix real and simulated robots
in an environment.

F2.4: Configuration method. The configuration of a robot
is often changed to meet the demands of various
applications. This information may be incorporated
into the source code (requiring compilation to effect
changes) or in configuration files that can be eas-
ily modified, either with a text editor or a graphical
interface.

F3: Infrastructure

Infrastructure refers to RDE functionality that affects
multiple components (or the system as a whole) and is not
tailored to individual architectural components, application
domains, or particular stages of application/agent develop-
ment. For example, logging facilities can be used with any
or all components, are often invaluable as debugging tools
during the implementation stage, and provide records of an
execution instance for later performance analysis. In some
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cases, however, it may be impossible to determine whether
a feature is due to a specific component or part of the
infrastructure by function alone. For instance, the graphical
representation of components might be implemented on an
ad hoc basis, removing it from consideration as infrastruc-
ture. A system must provide generic mechanisms that supply
these capabilities for them to be considered as infrastructure.

F3.1: Low-level communication. Inter-process communica-
tion (such as memory mapping, pipes, or sockets), ba-
sic networking protocols (such as UDP, TCP/IP, etc.),
and mid-level protocols (such as IIOP or RMI) are part
of the system infrastructure. These capabilities are of-
ten dictated by the platform being used, as their avail-
ability is contingent on the operating system and/or
programming language.

F3.2: Logging facilities. Log files of application operation
can be used for debugging, repetition of an application
execution, or gathering performance statistics. Log-
ging mechanisms can have various levels of flexibility,
including fixed (which generally captures all data pro-
duced by components) vs. configurable data content,
local vs. remote logging, file name selection, single
vs. multiple data streams and/or files, or the ability to
start and stop logging at run-time.

F3.3: Debugging facilities. While logging facilities can suf-
fice for basic debugging, robust debugging tools can be
invaluable during application implementation. Such
tools can range from low-level code editors, to mid-
level graphical representations of sensors and effec-
tors, to high-level graphical behavior or task modifi-
cation, possibly allowing run-time suspension, modi-
fication, and restarting.

F3.4: Distribution mechanisms. Distribution mechanisms,
as part of the infrastructure, are required for multi-
host applications. Typically, distribution capabilities
are enabled by middleware (e.g., Poggi et al., 2002),
either as a generic component implementation frame-
work (such as CORBA, 2005, SOAP, 2003, etc.)
or in the form of particular components (such as
an agent naming service, directory facilitator, bro-
ker agents, or other components that provide similar
functionality).

F3.5: Scalability. As robotic applications grow in scope
and capabilities, a developer must be concerned with
how an RDE handles increasing complexity. The term
“scalability” can refer to many different aspects of a
system, some of which are addressed more specifically
by other criteria. For instance, architectural primitives
(criteria F1.1) and a high-level language (F4.1.2) in-
cludes facilities for managing complex actions and
behaviors, software engineering (F1.2) takes into ac-
count modularization that promotes system organi-

zation, while distribution mechanisms (F3.4) encom-
passes mechanisms used to add computational hosts.
Additional concerns might include the overhead in-
volved with message passing, both within a single
host and among connected hosts, task allocation for
multi-robot applications, or other concerns. Scalabil-
ity is used here in a broad sense as a general system
property, inclusive of the above.

F3.6: Component mobility. “Mobility” refers to the potential
to relocate components at run-time. In robotic applica-
tions, however, it is somewhat constrained by possible
dependence on the location of the requisite hardware.
When an application is distributed across many hosts,
component mobility can be used for dynamic resource
allocation or run-time system reconfiguration, assum-
ing there are mechanisms that allow reconnection to
data sources. Ultimately, these capabilities would be
automatic, adjusting operation with a changing com-
puting environment.

F3.7: System monitor/management. A system monitor dis-
plays the status of multiple application components,
often in graphical form. An extension of simple mon-
itoring can allow for the management of the compo-
nents’ operation, ranging from starting and stopping
to adjustment of parameters. Such extensions are often
implemented as part of individual components, which
are treated separately as an implementation character-
istic in Subsection crit-impl-char and do not qualify
as part of the infrastructure.

F3.8: Security. An application executing on a single robot
may not need any security mechanism, but distribution
across many hosts raises such concerns. Predefined
components for encryption, authentication, and access
control can be available for ready integration into ap-
plications. (A related discussion of security concerns
in the multi-agent system RETSINA can be found in
Singh and Sycara (2004).)

F3.9: Fault-tolerance. Repeated failures of both hardware
and software are common in robotic applications. The
system infrastructure may incorporate generic mech-
anisms for failure detection, or be structured such
that disruptions due to failed components do not halt
the entire application. Extending this concept, mecha-
nisms for failure recovery may exist that enable com-
ponents to automatically recover from failures with no
outside intervention (for instance, see Melchior and
Smart, 2004).

F4: Implementation

In practice, an important reason for selecting a particular
RDE is to facilitate the implementation of an agent architec-
ture. We subdivide implementation features into two areas:
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(1) implementation characteristics, which are somewhat ab-
stract and refer to implementation concerns that are not pre-
defined components, and (2) predefined components, which
perform some specific function that can be directly incorpo-
rated into an architecture.

F4.1: Implementation characteristics

F4.1.1: Programming language. Architecture implementa-
tion necessitates the use of programming languages,
such as C or Java. An RDE that is itself imple-
mented in the particular language used for the appli-
cation guarantees compatibility; however, an RDE
may also supply interfaces or wrappers that inter-
face easily with other languages.

F4.1.2: High-level language. Some programming environ-
ments integrate higher-level languages, such as
The Behavior Language (Brooks, 1990), COLBERT
(Konolige, 1997), or GRL (Horswill, 2000) for be-
havior description or ACL (FIPA-ACL, 2002) or
KQML (Mayfield et al., 1996) for agent commu-
nication. These high level languages can be used
within an agent architecture (e.g., to facilitate data
transfer between components) or in multi-robot ap-
plications.

F4.1.3: Documentation. The usability of an RDE is greatly
enhanced by the inclusion of well-documented code
and user manuals that may include the system’s
API specification, answers to frequently asked ques-
tions, trouble-shooting guides, instructions concern-
ing custom extensions, etc.

F4.1.4: Real-time operation. Real-time constraints are often
critical in designing and operating robot architec-
tures. Real-time capabilities of an RDE are generally
dependent on the operating system and/or program-
ming language.

F4.1.5: Graphical interface. An RDE may supply pre-
implemented graphical interfaces that enhance in-
dividual component visualization during applica-
tion execution, including displays related to var-
ious sensors, effectors, behaviors, robot control,
navigational plans, etc. Additionally, RDEs may
define a standardized method of adding such
displays.

F4.1.6: Software integration. RDEs may provide tools that
facilitate the integration of external software, either
at the component level (e.g., a localization routine) or
a complete application-as-component (e.g., speech
production), greatly enhancing development time
and effort. A notable development in this area is
“wrappers” for components of other robotic systems
that promote the integration, sharing, and reuse of
components.

F4.2: Predefined components

Predefined components are analogous to software libraries;
since the list is open-ended and will most assuredly expand
in the future, we deviate from the format used thus far and
give a necessarily incomplete list of common components
with corresponding citations. Furthermore, the list assumes
a fairly high-level viewpoint, necessary to maintain an ac-
ceptable level of commonality among systems.

Currently, most RDEs include predefined components
for map-making (F4.2.1), localization (F4.2.2, e.g., Thrun,
2003), route planning (F4.2.3, e.g., Konolige, 2000), speech
recognition (F4.2.4), speech production (F4.2.5), and vi-
sion processing (F4.2.6, with various capabilities such as
blob tracking, edge detection, motion tracking, etc.). Some
less common components are rule interpreters (F4.2.7, e.g.,
JESS, 2003 or Sloman, 2002), planners (F4.2.8, e.g., Maes,
1990; Jensen and Veloso, 1998; Stentz, 2002), neural net-
works ( F4.2.9, e.g., Koker et al., 2004), and machine learn-
ing (F4.2.10, e.g., Vijayakumar et al., 2002; Russell, 2004).
Even less common, and therefore not included in the evalua-
tion criteria, are support for instruction/teaching (e.g., Sku-
bic and Volz, 1998; Bentivegna and Atkeson, 2002), human
robot interaction facilities (e.g., Fong et al., 2003), affect
(e.g., Pfeifer, 1988; Moshkina and Arkin, 2003; Scheutz
et al., 2006), and coordination mechanisms (e.g., Hoff and
Bekey, 1995; Chaimowicz et al., 2003; Dias and Stentz,
2003).

4 RDE feature criteria evaluations

For each of the RDEs in Section 2, a value has been as-
signed for the criteria from Section 3, determined using the
system’s documentation and verified based on usage expe-
rience (a synopsis of experimental implementations and the
usability evaluation is provided in Section 5). Three types
of assignments are made: (1) binary, signified by a blank
for no and

√
for yes, (2) ternary, signified by � for not

supported, � for partially supported, and � for well sup-
ported, and (3) listings, which are text descriptions. Table 2
shows the values assigned to each system for each criteria,
while further explanation is given in the text. The following
shorthand column headings are used to designate particular
systems: TB–TeamBots, AR–ARIA, P/S–Player/Stage, Py–
Pyro, C–CARMEN, ML–MissionLab, AD–ADE, Mi–Miro,
and MA–MARIE.

F1: Specification

F1.1 Architectural primitives: To attain a somewhat sup-
ported value, a system must provide at least one
form of robot control. Systems that provide additional,
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Table 2 Feature criteria evaluation by RDE

Category Criteria TB AR P/S Py C ML AD Mi MA

Specification F1 F1.1 Architectural primitives � � � � � � � � �
F1.2 Software engineering � � � � � � � � �

F1.3 Architecture neutrality
√ √ √ √ √ √ √ √ √

Platform F2 F2.1 Operating system J U,W U,W U,W U U J U,W U

F2.2 Hardware support � � � � � � � � �
F2.3 Simulator � � � � � � � � �
F2.4 Configuration method � � � � � � � � �

Infrastructure F3 F3.1 Low-level communication S S S S I I R C S

F3.2 Logging facilities � � � � � � � � �
F3.3 Debugging facilities � � � � � � � � �
F3.4 Distribution mechanisms � � � � � � � � �
F3.5 Scalability � � � � � � � � �
F3.6 Component mobility � � � � � � � � �
F3.7 Monitoring/Management � � � � � � � � �
F3.8 Security � � � � � � � � �
F3.9 Fault-tolerance � � � � � � � � �

Implementation F4 F4.1.1 Programming language Java C++ C++ Pyth C C++ Java C++ C++

F4.1.2 High-level language
√ √ √ √ √ √

F4.1.3 Documentation � � � � � � � � �
F4.1.4 Real-time operation

F4.1.5 Graphical interface � � � � � � � � �
F4.1.6 Software integration � � � � � � � � �
F4.2.1 Map-making

√ √ √ √ √ √

F4.2.2 Localization
√ √ √ √ √ √ √ √

F4.2.3 Route planning
√ √ √ √ √ √ √

F4.2.4 Speech recognition
√ √ √ √ √

F4.2.5 Speech production
√ √ √ √ √ √

F4.2.6 Vision processing
√ √ √ √ √ √ √ √

F4.2.7 Rule interpreters
√ √ √

F4.2.8 Planners
√ √

F4.2.9 Neural networks
√ √ √

F4.2.10 Learning
√ √ √

likely more complex, methods of robot control receive
a well supported value. Player/Stage does not pro-
vide any predefined control methods, following their
policy of providing only the framework for imple-

menting robot control and so receives a not supported
value. ARIA provides a set of basic actions and an
elementary priority-based action resolver. CARMEN
provides a Markov decision process planner as part of
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its navigation component. Each receives a somewhat
supported value. The rest of the systems are considered
well supported. TeamBots provides schema-based mo-
tor control, finite state machine (FSM) sequencing, and
hierarchical behaviors via the Clay behavior configu-
ration system. Pyro provides both subsumption and
fuzzy blending of behaviors, while MissionLab pro-
vides schema-based control, behavior sequencing and
artifacts. ADE provides access to a general-purpose
rule interpreter, schema-based and subsumption-based
behavior primitives, a Prolog interface, and a dis-
tributed neural-network style component model based
on APOC (Scheutz and Andronache, 2003). Miro in-
cludes a custom “behavior engine”, based on that in-
troduced in Brooks (1991). MARIE, via the Robot-
Flow and FlowDesigner packages, provides hidden
Markov models, fuzzy blending, FSMs, an interface
to Octave software, and other primitives.

F1.2 Software engineering: To attain a somewhat supported
mark, an RDE must explicitly state design principles,
be implemented using an object oriented programming
language (e.g., C++ or Java), or make use of a high-
level object language (e.g., CORBA). An explicit theo-
retical foundation yields a well supported mark. Team-
Bots, Player/Stage, ARIA, CARMEN, Pyro, MARIE,
and Miro are of the former type, while the use of
Societal Agent theory in MissionLab and the APOC
formalism in ADE provides the basis for receiving a
well supported value.

F1.3 Architecture neutrality: All the systems under consid-
eration are neutral with regard to agent architectures,
although MissionLab has a strong association with the
AuRA architecture (Arkin and Balch, 1997) and CAR-
MEN has been described by its authors as an exam-
ple of the 3T hybrid architecture (Montemerlo et al.,
2003b). However, neither enforces the use of the as-
sociated architecture, and can therefore be considered
agent architecture neutral.

F2: Platform support

F2.1 Operating system: Compatible operating systems have
been determined according to information from system
documentation and do not necessarily discount those
not listed. If a system, such as TeamBots or ADE, is
implemented in Java, the assumption is made that it
will execute on any computer platform for which a
Java Virtual Machine of the required type is imple-
mented. Similarly, no differentiation is made among
the various “flavors” of UNIX, although each sys-
tem has at least been tested in a Linux environment.
Player/Stage, ARIA, and Pyro run on both UNIX and
Windows. CARMEN, MissionLab, Miro, and MARIE

run on UNIX systems. Letter codes in Table 2 are as
follows: J = Java, U = UNIX, W = Windows.

F2.2 Hardware support: Hardware support, as used here,
refers to specific robot manufacturers/platforms. We
assume a relatively limited pool of sensors and ef-
fectors are used across platforms (such as SICK LMS
lasers), although all systems allow specification of cus-
tom sensors and/or effectors. To attain a somewhat sup-
ported value, a system must support at least three dif-
ferent platforms; more than five earns a well supported
value. ARIA supports only MobileRobots robots, ADE
supports MobileRobots and Arrick Trilobot, Team-
Bots supports Cye and Nomad 150 robots, Miro sup-
ports MobileRobots, iRobot B21, and their in-house
Sparrow platforms, MissionLab supports MobileR-
obots, iRobot, Evolution Robotics ER-1, and Nomad
robots, MARIE supports MobileRobots platforms na-
tively, in addition to all platforms available through
ARIA, Player/Stage, and CARMEN via its adapters,
Player/Stage supports MobileRobots, iRobot, Segway,
Acroname, Botrics, Evolution Robotics, and K-Team
platforms, CARMEN supports MobileRobots, Aibo,
Nomadics, iRobot, and Segway platforms, and Pyro
supports MobileRobots, Aibo, Cye, iRobot, Khepera,
Nomad, and Segway platforms.

F2.3 Simulator: To attain a somewhat supported value, an
RDE must at least provide a low-fidelity, 2-dimensional
simulator (which may or may not support multi-robot
simulations). To attain a well supported value, an RDE
must provide a high-fidelity, 3-dimensional simulator
that supports multi-robot simulations and may be used
to model robotic mechanisms. CARMEN includes
a 2-dimensional simulator that supports low-fidelity
single-robot simulation that can, with some manipu-
lation of the IPC communications, be used for multi-
robot simulations. TeamBots, ARIA, MissionLab and
ADE provide low-fidelity, multi-robot simulators. Mis-
sionLab also supplies a low-fidelity 3-dimensional sim-
ulator (although the manual states that its use will
halt the system). A major component of Player/Stage,
as indicated by its name, is the Stage 2-dimensional
simulator, which is low-fidelity and supports multiple
robots. Also available is the Gazebo high-fidelity 3-
dimensional simulator, which elevates Player/Stage to
fully supported status, along with Pyro and MARIE,
which provide interfaces to Stage, Gazebo, and the
ARIA and CARMEN simulators.

F2.4 Configuration method: A system, such as TeamBots,
that embeds configuration in source code has a not
supported status. If a system stores configuration in
a text file (possibly XML), it receives a somewhat
supported value. Player/Stage, ARIA, Pyro, and Miro
all use text files, of which Miro supports XML. A
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system that provides a graphical means of accessing
and modifying configuration settings gets a well sup-
ported value, which includes CARMEN, MissionLab,
and ADE. MARIE also receives a well supported value
due to the graphical interfaces included with FlowDe-
signer and RobotFlow; MARIE itself uses XML con-
figuration files.

F3: Infrastructure

F3.1 Low-level communication: All systems considered pro-
vide socket support and common networking protocols.
TeamBots, Player/Stage, ARIA, and Pyro use direct
socket connections as their primary method of com-
munication. CARMEN and MissionLab use IPC and
IPT, respectively, which adds a level of abstraction to
general TCP/IP sockets. ADE uses Java’s RMI, while
Miro relies on CORBA’s IIOP. MARIE makes use of
shared memory or sockets, relying on ACE for the lat-
ter. Letter codes in Table 2 are as follows: S = Socket,
I = IPC/IPT, R = RMI, C = CORBA IIOP.

F3.2 Logging facilities: All systems provide some means
of monitoring component operation as console output
or graphical display, which forms the baseline for the
value assignment (i.e., a not supported value). To gain
a somewhat supported value, at the very least a sys-
tem must supply a predefined logging facility; to gain
a well supported value, a system must allow for remote
data capture, run-time starting and stopping of logging,
and dynamically configurable data capture that can be
recorded in one or more files in one or more locations.
TeamBots provides only simple console/graphical out-
put. Logging in ARIA, Player/Stage, CARMEN, ADE,
and Miro is well supported, while logging in Pyro, Mis-
sionLab, and MARIE is somewhat supported.

F3.3 Debugging facilities: To attain a somewhat supported
status, a system must allow non-simulated application
interruption and restart in conjunction with the ability
to obtain information about component data. To qual-
ify as well supported, a system must allow run-time
suspension, modification, and replacement of arbitrary
components. TeamBots is the only RDE receiving a
not supported value. ARIA receives a somewhat sup-
ported value. Player/Stage, Pyro, CARMEN, Mission-
Lab, ADE, MARIE, and Miro all qualify as well sup-
ported, but MissionLab and MARIE excel due to their
integrated and extensive graphical interfaces. Mission-
Lab is unique in that it also uses the included case-
based reasoner to analyze a “mission” after comple-
tion to identify the source of operational errors. Also
notable is ADE’s ability to dynamically compile and
replace components at run-time using the ADE class
loader.

F3.4 Distribution mechanisms: To be elevated from a not
supported to somewhat supported value, a system must
include a component that functions as middleware. To
qualify as well supported, an agent framework that
treats components as independent agents is required.
Neither TeamBots nor Pyro provide middleware mech-
anisms and receive a not supported. The IPC and IPT
software used by CARMEN and MissionLab and the
Player server in Player/Stage act as a centralized nam-
ing service, while the ArNetworking package provided
in ARIA fills a similar function. ADE, MARIE, and
Miro each specifically incorporate enhanced middle-
ware functionality as part of their infrastructure, earn-
ing a well supported value.

F3.5 Scalability: To use “scalability” as a general reflection
of an RDE’s properties, a combination of criteria from
categories F1, F3, and F4 (specification, infrastructure,
and implementation) is used. To earn a well supported
value, a system must provide scalability support in all
categories (as defined below); a somewhat supported
value indicates support in any two categories, while
support for a single category or none at all receives
a not supported value. In the specification category,
an RDE must have a well supported value for either
architectural primitives or software engineering (cri-
teria F1.1 or F1.2). For support in the infrastructure
category, a system must earn at least a somewhat sup-
ported value for distribution mechanisms (F3.4), while
the implementation category is comprised of satis-
faction of at least one of high-level language, rule
interpreters, or planners (F4.1.2, F4.2.7, and F4.2.8,
respectively).

F3.6 Component mobility: To receive a somewhat supported
value, an RDE must provide architectural components
to operate independently of one another in addition
to continuing system operation when a component is
removed, restarted, and reconnects. To attain a well
supported value, mechanisms must be in place that can
perform this task automatically. TeamBots, ARIA, and
Pyro all use a fixed run-time system architecture that
does not allow mobility and so receive a not supported
value. The portability of devices in Player/Stage allows
manual component relocation at run-time, as do the
modules in CARMEN and the object structure found in
MARIE and Miro, while MissionLab provides mech-
anisms to upload robot executables to remote hosts.
Each of these systems receives a somewhat supported
status. ADE provides mechanisms for saving state, au-
tomatic component start-up, and automatic component
re-location due to detected failures, earning a well sup-
ported value.

F3.7 System monitoring/management: To gain somewhat
supported status, an RDE must provide an interface
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that gives access to all components in the system
architecture. To gain well supported status, an
RDE must also provide mechanisms to manage all
components. (Note that graphical representations
of a robot’s sensors, effectors, or other individual
components do not qualify as infrastructure; see the
Graphical Interface in Section 4). None of TeamBots,
Miro, nor CARMEN provide coherent system-wide
facilities. ARIA supplies the MobileEyes GUI for
robot display and control, but source code is not
freely available and thus earns a not supported
status. Pyro, Player/Stage, MissionLab, ADE, and
MARIE all have graphical interfaces that not only
display component status, but also allow component
control.

F3.8 Security: To gain a somewhat supported value, a sys-
tem must provide a way to securely authenticate com-
ponents. To gain a well supported value, an RDE
must also provide access control and encryption. None
of TeamBots, Player/Stage,6 Pyro, CARMEN, Mis-
sionLab, Miro, or MARIE use security mechanisms.
MARIE and Miro both might inherit security fea-
tures from their use of ACE for component com-
munication, but do not exploit its availability. ARIA
provides authentication services as part of the Ar-
Networking package, earning a somewhat supported
value. ADE explicitly addresses all three aspects
of security (encryption, authentication, and access
control).

F3.9 Fault-tolerance: To achieve somewhat supported sta-
tus, a system must isolate components such that failure
of a single component does not cause the entire appli-
cation to fail. To receive well supported status, an RDE
must also provide mechanisms in support of failure re-
covery. None of the TeamBots, ARIA, or Pyro RDEs
provide component isolation. Player/Stage, CARMEN,
and MissionLab, through their reliance on IPC soft-
ware, each isolates components, while MARIE and
Miro’s use of ACE objects serve the same purpose. It
is worth noting that MissionLab also incorporates a
case-based reasoning wizard for the purpose of repair-
ing a mission post-execution (Moshkina et al., 2006)
and that ACE implements the Fault Tolerant CORBA
specification, although neither MARIE nor Miro have
yet incorporated it. ADE\ provides both fault detec-
tion and fault recovery at the component level through
its use of heartbeats between ADEServers and
clients.

6 While the Player server in Player/Stage can optionally be set to require
authentication, it is explicitly acknowledged that the authentication is
not for security, as keys are passed in plain text.

F4: Implementation

F4.1: System implementation characteristics

F4.1.1 Programming language: Both TeamBots and ADE
are written in Java, while CARMEN and Pyro
are implemented in C and Python, respectively.
Player/Stage, ARIA, MissionLab, MARIE, and Miro
are implemented in C++.

F4.1.2 High-level language: To qualify as supporting a
high-level language, an RDE must supply a struc-
tured method for controlling a robot (e.g., a behavior
or agent communication language). TeamBots sup-
plies the Clay behavior hierarchy, ARIA provides ac-
tion specification via the ArAction class, MissionLab
provides both CDL and CMDL, Pyro and MARIE
supply both a set of foundational behavior classes
and finite state automata, and Miro provides a “be-
havior engine” for behavior specification. None of
Player/Stage, CARMEN, nor ADE\ provide a high-
level language.

F4.1.3 Documentation: To attain a somewhat supported
value, an RDE must have well documented source
code and a publication outlining its use. If an RDE
also supplies a manual that describes how to use
the system (including installation instructions, guide-
lines for developing applications and extending ca-
pabilities into new areas, solutions to common prob-
lems, and example code), it receives a well supported
value. While TeamBots, ADE, Miro, and MARIE
all provide some level of documentation, both web-
based and in source code, it is either incomplete or
they do not provide finished manuals that detail their
use. Player/Stage, ARIA, CARMEN, and Mission-
Lab all have complete and detailed manuals avail-
able, while Pyro provides the equivalent through its
extensive online documentation.

F4.1.4 Real-time operation: None of the systems directly
provide real-time support, although MissionLab has
the mechanisms in place for use with a purchased
license of proprietary software from Honeywell.

F4.1.5 Graphical interface: To obtain a somewhat sup-
ported value, an RDE must supply graphical inter-
faces for visualizing component operation or design-
ing control code without actual programming. To re-
ceive a well supported value, an RDE must provide
both items just mentioned, in addition to a standard
method for creating new displays. Only TeamBots
does not provide a graphical display for a robot at
run-time (although it does supply a graphical simu-
lator facility), and so receives a not supported value.
While the MobileEyes GUI is available with ARIA,
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source code is not freely available and thus has to
be classified as not supported. CARMEN provides
ad hoc, component specific graphical interfaces, but
does not provide standard methods for adding vi-
sualization nor graphical control code tools, and so
receives a somewhat supported value. MissionLab
and Miro provide interfaces that allow developers
to design control code without actual programming,
but do not provide a standard method for defining
new displays, also earning them a somewhat sup-
ported value. Player/Stage, ADE, Pyro, and MARIE
all provide both implemented displays and a stan-
dardized method of creating new displays, earning
well supported values.

F4.1.6 Software integration: To attain somewhat supported
status, an RDE must provide a standard API or mech-
anism for incorporating “outside” software, gener-
ally using socket connections (with the recognition
that translation code will always have to be written).
Providing additional codified facilities that interface
with other RDEs, thereby allowing their software to
be “dropped into” the environment, elevates the sta-
tus to well supported. Neither TeamBots, ARIA, nor
MissionLab provide such standard APIs or mech-
anisms. Player/Stage and CARMEN provide such
APIs (for their devices and modules, respectively),
Pyro and ADE explicitly include steps to “wrap” ex-
ternal software, MARIE supplies a variety of APIs
and mechanisms for integration, while Miro relies on
writing TAO interfaces in Interface Device Language
(IDL), used to produce C++ code. Each receives at
least a somewhat supported value. MARIE and Pyro
also provide translation facilities such that compo-
nents written for CARMEN, Player/Stage, or ARIA
can be used and earn a well supported value.

F4.2 Predefined components

As mentioned earlier, any list of predefined components is
open-ended and therefore necessarily incomplete. We limit
this list to components that are commonly available and only
list the RDEs that include them. Furthermore, no quantita-
tive evaluation is given; the intent is not to establish a full
taxonomy, but to provide a high-level indication of system
functionality. It should also be noted that both ARIA and
MissionLab provide some of the following components so
long as they are licensed; due to the limitation of this sur-
vey to open source software, such components have been
excluded.

F4.2.1 Map-making: ARIA provides the Basic Mapper
software, which can be used to manually construct
maps. Player/Stage, Pyro, CARMEN, ADE, and

MARIE all include map-making facilities, which
are combined with localization.

F4.2.2 Localization: TeamBots provides a landmark-based
localization component, while Miro provides par-
ticle filter localization. ARIA provides sonar-based
localization, but full localization facilities must be
purchased. Player/Stage, Pyro, CARMEN, ADE,
and MARIE all include localization facilities, which
are combined with map-making.

F4.2.3 Route planning: TeamBots and ADE provide
schema-based navigation, ARIA supplies a nav-
igator integrated with its localization package,
Player/Stage provides a wavefront propagation
route planner, CARMEN uses a Markov decision
process planner, MissionLab relies on geometric
map analysis and an A∗ graph search, and MARIE
integrates Player/Stage and CARMEN navigation
components.

F4.2.4 Speech recognition: Player/Stage, ARIA, ADE,
Pyro, and Miro all provide speech recognition
support through integration of outside software
such as Sphinx (Sphinx, 2004) or Sonic (Pellom
and Hacioglu, 2003).

F4.2.5 Speech production: Player/Stage, ARIA, ADE,
Pyro, MARIE, and Miro all provide speech produc-
tion support through integration of outside software
such as Festival (Festival, 2004).

F4.2.6 Vision processing: MissionLab and Miro have ba-
sic image/video capture capabilities, but Miro also
provides stereo image capture and many video fil-
ters. TeamBots includes CMVision software, which
can capture images and perform blob detection.
ARIA has two vision packages available, the Ac-
tivMedia Color Tracking Software (ACTS) and
VisLib. ACTS is a blob detection package, while
VisLib includes image filters, blob detection, and
object tracking. Player/Stage supports both ACTS
and CMVision. Pyro includes image/video capture,
blob, edge, and motion detection, assorted filters,
and stereoscopic tools, implemented in C++ for
speed reasons. ADE\ includes both an ACTS inter-
face and custom blob detection, object tracking, and
face/emotion detection. MARIE, via the RobotFlow
software, provides custom image capture, blob de-
tection, movement detection, text/symbol extrac-
tion routines, and supports OpenCV.

F4.2.7 Rule interpreters: ADE includes an interface to
POP-Rulebase (Sloman, 2002) and Prolog, while
MARIE and MissionLab both include custom rule
interpreters.

F4.2.8 Planners: While item F4.2.3 specifically covers
navigation planners, these are considered too
task-specific to qualify under the general rubric of
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“planner”. MissionLab and MARIE both supply
generic planners.

F4.2.9 Neural networks: Pyro, Miro, and MARIE all in-
clude neural network software.

F4.2.10 Learning: TeamBots provides both reinforcement
and Q-learning components, Pyro has a reinforce-
ment learning module, while MissionLab includes
integrated case based reasoning and Q-learning
components. We do not include neural network soft-
ware under the learning heading, as it appears as a
separate category above.

5 RDE usability evaluations

The systematic comparison of RDEs with respect to their
supported features based on a conceptual framework is one
important part of an RDE evaluation. Another important part
is RDE usability, for the extent to which an RDE can be easily
installed and used in research is ultimately a decisive factor
for its adoption. Yet, surprisingly, there is only one previous
study (Orebäck and Christensen, 2003) that provides a prac-
tical RDE evaluation. And while a robotic architecture was
actually implemented and executed on a robot in Orebäck
and Christensen (2003), their study is very limited in scope
(only three RDEs were evaluated according to a small set of
criteria based on a single application) and does not provide
a methodology for systematic comparisons and subsequent
evaluations that ties together conceptual, practical, and im-
pact factors. Consequently, the conclusions (Orebäck and
Christensen, 2003) arrived at have limited applicability.

We believe that a comprehensive evaluation needs to en-
compass at least the three categories of usability criteria:

U1: Installation. Basic steps required to obtain a usable sys-
tem, evaluated in terms of the required time and effort.

U2: Basic usability. Implementation and execution of a
simple “lowest common denominator” architecture for
RDE comparison, focussing on “low-level” sensor and
effector access and allows for an investigation of archi-
tectures that reside on a single host.

U3: Advanced usability. Usage of individual, predefined,
“high-level” components that would commonly form
sub-architectures of a complex, distributed architecture;
an effort is made to explore uncommon (and possibly
unique) “high-level” system features.

The following subsections describe the three categories
in more detail. As was done with features in Sections 3
and 4, a set of criteria is defined and subsequently evalu-
ated. Due to the variability of each criteria’s subject, value
meanings are specified per item; in general they can be
interpreted as: � for below average, � for average, and
� for above average. While an attempt has been made

to adhere to a ternary value assignment, a value of na is
used to indicate that a specific item was not examined in
sufficient depth to assign a value for some reason (e.g.,
incompatible hardware, difficulties with prerequisite soft-
ware, etc.). na values will not be included in an RDE’s
score. Results are shown in Table 3, where the following
shorthand column headings are used to designate particular
systems: TB–TeamBots, AR–ARIA, P/S–Player/Stage, Py–
Pyro, C–CARMEN, ML–MissionLab, AD–ADE, Mi–Miro,
and MA–MARIE.

All systems were installed on at least two computers out
of a selection of five: two laptops, two desktops, and the on-
board PC of an ActivMedia PeopleBot P2DXe robot (shown
on the right in Fig. 1). None of the computers were the same
make and model, with varying CPUs (850 MHz Pentium
III, 1.3 GHz and 2.0 GHz Pentium M, 2.3 GHz Pentium 4,
and a 1.8 GHz AMD Athlon) and memory capacities (from
128MB-1GB), although all used Linux (either Debian or Fe-
dora distributions) running a 2.6.x kernel. Various supporting
hardware included microphones, speakers, a Firewire cam-
era, and both wired and wireless Ethernet networking. All
non-simulated experiments were conducted on the robot,
which also has a pan-tilt unit, sonar, bumpers, and a SICK
LMS200 laser range finder.

U1: Installation

Prior to actually using an RDE, it must be properly installed.
Since we believe that installation difficulties might often be
a deterrent for potential users, we give “Installation” its own
category and criteria.

U1.1 Documentation: Installation documentation refers
specifically to how well the documentation described
the installation process, including required prepara-
tory steps and supporting software, minimum system
specification, a clearly laid-out sequence of instruc-
tions, a list of known or potential issues, inclusion
of mailing list or contact addresses, and references to
further information. Satisfying more than five of the
above requirements receives a � value, three or four
receives a � value, while less than three receives a �.

U1.2 Non-RDE Installation: In all cases, installation re-
quired additional supporting software. In some cases,
this is limited to a single package (e.g., an adequate
Java system), while in others, a large set of additional
software is required to enable all available features. A
value of � indicates that installing non-RDE software
(including, if necessary, determining what supporting
software was required, actual compilation and instal-
lation, and any needed debugging) took less than three
hours, a � indicates less than two days, while a � in-
dicates more than two days. Due to the level of detail
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Table 3 Usability Criteria
Evaluation by RDE Category Criteria TB AR P/S Py C ML AD Mi MA

Install U1.1 Documentation � � � � � � � � �

U1.2 Non-RDE installation � � � � � � � � �

U1.3 RDE installation � � � � � � � � �

U1.4 installation usability � � � � � � � � �

Low-level U2.1 documentation � � � � � � � � �

U2.2 architecture implementation � � � � � � � � �

U2.3 architecture execution � � � � � � � � �

U2.4 graphical tools � � � � � � � � �

U2.5 overhead (memory, CPU) �† � � � � �† � �† �

U2.6 “low-level” usability � � � � � � � � �

High-level U3.1 documentation na � � � � � � � �

U3.2 predefined components na � � � � � � � �

U3.3 task implementation na � � � � � � � �

U3.4 distribution na � � � � � � � �

U3.5 graphical tools na � � � � � � � �

U3.6 system integration na � � � � � � � �

U3.7 “high-level” usability na � � � � � � � �

a † indicates that execution of
the “low-level” architecture was
done in simulation due to
difficulties running it on the
robot.

Fig. 1 Left: The “simple” architecture algorithm implementing a wan-
der behavior with obstacle avoidance. At each time step, a set of polar
range readings R = (r1, r2, . . . , rn) is obtained, where −π ≤ rangle ≤
π (rangle = 0 is straight ahead) and rdistance is relative to the center
of the robot. The rotational velocity turning is calculated by summing
the x component cos(rangle) of polar readings, divided by square of the

distance rdistance to account for obstacles, multiplied by some system-
dependent scalar α. The translational velocity forward is calculated
similarly, using the y component sin(rangle), subtracted from the to-
tal to make it repulsive, then adding a constant β for default forward
movement. Right: The robot on which experiments were performed
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necessary to cover the variety and scope of additional
software packages, we do not address many of the
related issues encountered, although some additional
information is given as part of criteria U1.4.

U1.3 RDE Installation: RDE installation refers to the steps
necessary to have a usable system, assuming all sup-
porting software has been installed. Values are the
same as non-RDE installation (U1.2): a � value indi-
cates that installation took less than three hours, a �
indicates less than two days, and a � indicates two or
more days were required to attain a usable system.

U1.4 Installation Usability: Usability, as related to the in-
stallation procedure, is the overall (and ultimately sub-
jective) impression of the experience. Values are as-
signed relative to the other systems, thus three systems
each receive �,�, and � values. The following notes
provide selected information (presented in no particu-
lar order) gathered during the implementation process
that help explain the evaluations:

� Pyro has a bootable “LiveCD” available, which
should avoid installation issues altogether. However,
actual robots rarely have a CD drive, making this ir-
relevant for non-simulated use. The packages in the
Pyro yum repository conflicted in some cases, but
manual installation was done without issue.

� The version of MissionLab available required the use
of gcc version 3.2 or below and related libraries,
which, due to its age and incompatibility with current
versions, was the cause of time-consuming installa-
tion issues.

� Installation of ACE/TAO software, required for Miro
and MARIE, was particularly time-consuming, par-
ticularly due to an initial misconfiguration that re-
quired multiple manual de- and re-installation. Miro
requires a particular ACE/TAO configuration instal-
lation, which is not documented.

� Installation of supporting packages for ADE includes
a hardware interface for Java, Player/Stage for simu-
lation, a secure shell client and server for distribution,
and assorted other packages to attain the full comple-
ment of system functionality.

� Few, if any, installation issues were experienced with
TeamBots, ARIA, Player/Stage, and CARMEN. The
issues that were encountered mostly concerned plat-
form configuration (e.g., appropriate privileges and
permissions, default hardware settings that differed
from the particular configuration in use, etc.).

U2: Basic usability

Basic usability in this context means to be able to imple-
ment and execute a simple robotic architecture to be able

to test a minimal set of capabilities supplied by each RDE.
The implemented architecture consists of a basic wander
behavior that incorporates obstacle avoidance. Only motor
control and range finder sensors were accessed, in as direct a
manner as possible, providing a “lowest common denomina-
tor” for RDE comparison. The basic algorithm, which uses
a potential field method, is shown on the left side of Fig. 1.
Note that because the robots available to the authors are not
supported by TeamBots, the architecture was implemented
but execution could only be done in simulation. Similarly,
MissionLab and Miro were also run in simulation due to re-
peated failures. Each time an installation was not successful,
the error was located, fixed, and another attempt was made.
Once simulated architecture execution was possible, a few
additional attempts were made to run the architecture on the
robot; when these also failed, simulated results were deemed
acceptable. Systems that were only evaluated in simulation
are marked with a † in Table 3.

U2.1 Documentation: In relation to the “low-level” archi-
tecture, documentation refers to information that en-
hances basic usability (e.g., APIs, example code, a fre-
quently asked question list, etc.). A � value indicates
that it was difficult to find information concerning ei-
ther basic functionality (e.g., how to send a command
to the robot) or a solution to a relatively simple prob-
lem (e.g., how to start architecture execution). A �
value indicates that information was available but re-
quired some effort to locate, while a � value indicates
that very little effort was required to find installation
and implementation information.

U2.2 Architecture implementation: Architecture implemen-
tation refers to the process of writing the program that
performs the wander behavior with obstacle avoid-
ance. A � value indicates that implementing the sim-
ple architecture was a major undertaking (requiring
more than two days), a � value indicates that substan-
tial effort was involved (requiring more than 5 hours),
and a � value indicates that implementation required
an expected amount of effort (less than 5 hours). It is
important to note that because the simple architecture
was a low-level implementation that circumvented or
avoided the abstractions and/or tools supplied by some
RDEs (e.g., TeamBots’ Clay system, ARIA’s prede-
fined actions, or MissionLab’s behavior libraries), the
value is not necessarily indicative of what might be
considered “normal” usage, which is considered in-
stead as part of “high-level” usability.

U2.3 Architecture execution: Architecture execution refers
to the effort required to start and stop a fully imple-
mented architecture (including both the control code
and supporting software, if they are separate). A �
value indicates a sequence of more than four steps,
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perhaps requiring multiple terminal connections that
each require separate initialization. A � value indi-
cates that two to four steps are required, sometimes
mitigated by the GUI. A � value indicates that startup
and shutdown requires a single step.7

U2.4 Graphical tools: For the “low-level” architecture,
graphical tools refer to the non-command line inter-
face presented by an RDE. A value of � is given if the
system provides both a display of basic operational
information and a graphical manner of starting and
stopping architecture execution. A value of � is given
if an RDE provides either, while a value of � indicates
that neither are provided.

U2.5 Operational overhead: Operational overhead refers
to the memory and CPU (M and C, respectively)
resources used during architecture execution.8 Initial
conditions were kept constant by rebooting the
computer for each system, turning the swap file off,
then executing the architecture three times, recording
measurements at one second intervals. Each execution
run is divided into two phases: (1) startup (denoted
by a subscript S), demarcated by the time just prior to
system startup until robot movement is first detected
and (2) execution (denoted by a subscript E), which
begins when robot movement is detected, continuing
for 90 seconds.
Figure 2 shows the average (with standard deviation
bars) and maximum values across all three runs. The
average values form the basis for calculating evalu-
ation scores by dividing the range in thirds that are
assigned values of 0 for the top third, 1 for the middle
third, and 2 for the lower third. More specifically, MS

and ME receive: < 20 MB = 2, < 40 MB = 1, and
> 40 MB = 0. For CS and CE ,<33% = 2, < 66%
= 1, and > 66% = 0. The values shown in Table 3
are the sum of MS, ME , CS , and CE , where a total of
6 or better receives a �, a 4 or 5 receives a �, and
3 or less receives a �. It is interesting to note that, in
most cases, the operational overhead displays the clas-
sic memory vs. CPU usage tradeoff in both the startup
and execution phases.

U2.6 “Low-level” usability: Usability, as related to the
“low-level” architecture, is the overall (and ultimately
subjective) impression of the experience. Values are
assigned relative to the other systems, thus three sys-
tems each receive �,�, and � values. The following

7 We do not consider placing a sequence of commands in a shell script
for execution as a single step.
8 While disk space usage and bandwidth are important, neither is con-
sidered. We exclude disk space due to the variability of packages re-
quired, while bandwidth is not addressed due to the single-host nature
of the “low-level” architecture.

notes provide selected information (presented in no
particular order) gathered during the implementation
process that help explain the evaluations:

� Execution for TeamBots, MissionLab, and Miro were
performed in simulation (denoted by a † in Table 3)
due to unsupported laser hardware in TeamBots and
difficulties in hardware communication for MissionLab
and Miro.

� Although RobotFlow supplies components for inter-
facing with a Pioneer and SICK lasers, execution for
MARIE used a Player server as the hardware interface
so that MARIE functionality was included in the per-
formance measurements.

� Inclusion of an easily accessible simulator was ex-
tremely useful in implementing and debugging an ar-
chitecture; Player/Stage and CARMEN are particularly
strong in relation to simulator integration, while Miro
was relatively difficult to access.

� The structure of TeamBots is such that implementations
that deviate from the included software (e.g., non-Clay
behaviors or unsupported hardware) are very difficult
to program.

� CARMEN and MissionLab require some knowledge
of IPC messages to implement custom components or
write routines that access the available components.

� Player/Stage, Pyro, and ADE provide a good balance
of high-level component abstractions while also pre-
serving accessibility to low-level sensor and effector
interfaces.

� Player/Stage and Pyro provide a varied base of example
code combined with relatively easy configuration and
relevant documentation.

� Both MissionLab and CARMEN provide excellent doc-
umentation; MissionLab has a clear and complete user
manual, while CARMEN’s documentation is structured
and organized in a manner that made it easy to find de-
sired information.

� Although ARIA provides very good documentation, the
“low-level” nature of sensor and effector access used in
this architecture deviates from the standard methods
addressed therein, leading to a more difficult imple-
mentation.

� While both the FlowDesigner and MissionLab GUIs are
extensive and polished, some low-level tasks are easier
to perform using a text editor (in other words, the GUI
was actually a hindrance in some respects).

U3: Advanced usability

While the “low-level” architecture provides a lowest
common denominator for subjective RDE evaluation, the
implementation of what we will refer to as “high-level
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Fig. 2 Operational overhead of each RDE executing the “low-level”
architecture. Top Row: Memory usage (in KB), showing average (with
standard deviation bars) and maximum values. The left-hand figure
shows the startup phase, while the right shows the execution phase.

Bottom Row: CPU usage (as a % of system load), again showing aver-
age and maximum values. As with the memory overhead, startup is on
the left and execution is on the right

subarchitectures” provides a basis for evaluating an RDE
under expected normal usage (although with a focus on
distributed computing which becomes necessary due to ar-
chitecture complexity and real-time processing constraints).
Because there are few areas in which all RDEs provide
the same capabilities in the same way, the underlying idea
is to obtain an estimate of the effort required to distribute
a single complex architecture over at least two hosts. A
model example of such an architecture is DIARC (Scheutz
et al., 2006), which provides a foundation for experiments
in human-robot interaction.

The “fundamental” components examined are: (1) vi-
sion processing (monocular, that uses blob-detection), (2)
speech recognition, (3) speech production, and (4) the pro-
vided robot control primitives, although attempts were made
to use of some (possibly unique) components and capabil-
ities (e.g., MissionLab’s selection of behaviors, ADE’s au-
tonomous distribution, etc.). The implementation consisted
of installing, configuring, and testing individual components,
then connecting at least two of them across a network as an
indication of ease of distribution, with the assumption that
connections among the other components will require sim-
ilar effort. No attempt was made to implement these tasks
in TeamBots, due to both the limited number of predefined

components and because the robots available to the authors
are not supported.

U3.1 Documentation: In relation to the varied tasks, doc-
umentation refers to information concerning the ad-
vanced RDE functionality (e.g., explanation of avail-
able components and their use, example code, etc.). In
particular, the focus was on the components required
for the varied tasks (vision, speech recognition, speech
production, and robot control) and their distribution.
A � value indicates either missing or incomplete in-
formation for at least two basic functionalities. A �
value indicates that information was either missing or
incomplete for only one basic functionality or that the
supplied documentation for any basic component was
minimal or unclear. A � value indicates that docu-
mentation was complete, easy to locate, and highly
readable.

U3.2 Predefined components: Predefined components refers
to the integrated capabilities included with an RDE. A
� value indicates that an RDE was either (1) missing
at least one component required to implement all “fun-
damental” functionality for the envisioned architecture
(robot control, vision, speech production, and speech
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recognition) or (2) did not provide at least two ad-
ditional components for each missing “fundamental”
component. A � value indicates that the basic compo-
nents were available or at least two other components
were available for each missing basic component. A
� value indicates that the RDE comes packaged with
more than four predefined components beyond what
is required for a � value, in addition to other tools
or functionality. Of particular note are Player/Stage,
Pyro, MissionLab and MARIE: Player/Stage supports
the largest number of devices, Pyro and MissionLab
include various additional functionalities (e.g., Pyro
includes working examples from Russell and Norvig
(2002), MissionLab includes a case-based reasoner
for post-execution analysis), while MARIE provides
many signal processing and vision tools via the Robot-
Flow and FlowDesigner packages.

U3.3 Task implementation: Task implementation refers to
the effort required to implement the subarchitectures,
both in terms of accessing individual components and
their distribution. As with the “low-level” architec-
ture, a � value indicates that implementation was a
major undertaking (requiring more than two days), a
� value indicates that substantial effort was involved
(more than five hours), and a � value indicates that
implementation required an expected amount of effort
(of less that five hours). It is imperative to note that
the “high-level usability” case made use of the ab-
stractions and/or tools supplied by some RDEs (which
sometimes proved detrimental), which may account
for differences from the value given for the “low-level”
architecture.

U3.4 Distribution: Distribution refers to the ease of locat-
ing components across hosts once the distribution
mechanisms have been implemented, accounting for
both startup/shutdown procedures and relocation of
components. A � value indicates that the system
provided facilities for automatic login and component
startup/shutdown, in addition to providing the means
to reconfigure component location. A � value
indicates that only one of those specifications was
met, and a � value indicates that neither is supported.
Of note is that RDEs in which components must
be implemented with network capabilities (e.g.,
components in CARMEN or Miro and servers in
Player/Stage or ADE) all have a relative advantage.

U3.5 Graphical tools: In relation to the “high-level
subarchitectures,” graphical tools refers to both the
presentation of an integrated display and the means to
graphically implement robot control procedures. This
differs from the “low-level” architecture in that (1) an
emphasis is placed on integration, such that architec-
ture display and system control is consolidated and (2)

a user does not have to write low-level programs. A
value of � is given if an RDE provides both, a value of
� if only one is provided, and � if neither is provided.

U3.6 System integration: System integration refers to the
separate issues of (1) easily connecting and control-
ling components in a complex architecture and (2) co-
herent system usage in terms of providing a consistent
interface to the complete system that allows access to
and control of individual components. A � value is
assigned if both objectives are met, a � if only one is
satisfied, and a � if neither.

U3.7 “High-level” usability: As with the “low-level” archi-
tecture, usability is the overall (and subjective) im-
pression of the experience of using each RDE. Values
are assigned relative to the other systems, thus three
systems each receive � and � values, while two re-
ceive a � value (because TeamBots was not evaluated
in terms of the high-level tasks). The following notes
provide selected information (presented in no particu-
lar order) gathered during the implementation process
that help explain the evaluations:

� Both ARIA and MissionLab have additional compo-
nents that were not considered here as they require
licensing and were not included in the downloadable
package.

� While ARIA’s documentation is in general very good,
the distribution package, ArNetworking, lacks com-
plete documentation. For some basic tasks, MARIE’s
documentation is sparse, limited to “node” listings,
while ADE and Miro are comparably spotty.

� Pyro’s interface is well integrated, allowing access to
various conceptually separate parts of an application
(i.e., the server, robot, devices, and “brain”), while also
providing the ability to enter Python commands at run-
time. However, non-graphical usage is not quite as pol-
ished (for instance, hanging when exiting the system).

� The user interface provided by MissionLab is espe-
cially suited to task specification implemented by non-
programmers, matching its objective of providing a
high-level view of robot control.

� Systems that require the strict use of abstractions in
support of their component model (e.g., the ACE/TAO
in Miro and FlowDesigner networks in MARIE) or, to
a lesser extent, require some level of abstraction re-
moved from actual source code (e.g., IPC/IPT commu-
nications in CARMEN and MissionLab and RMI in
ADE) can be either beneficial or detrimental to some
degree. For instance, Miro’s requirement that all com-
ponents are CORBA objects makes component inte-
gration and distribution extremely simple, but the im-
plementation of an arbitrary component is made more
difficult.
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6 Discussion

The evaluations presented in Sections 4 and 5 provide the
foundation for comparing RDEs, both at a conceptual level
and from a practical perspective. Augmented with an impact
evaluation (to be described below), we envision the results
of this survey being useful to the robotics community in at
least two ways: (1) by providing researchers with a practical
means of selecting an RDE that will most closely match
their requirements and (2) by giving RDE developers an
overview of the innovations being made in other systems,
possibly suggesting improvements and extensions to their
own system.

6.1 Researchers

To perform a comprehensive comparison of the RDEs pre-
sented, three separate measures are given: (1) a summary
of the evaluations from Section 4 concerning an RDE’s
features, (2) a summary of the evaluations from Section 5
concerning an RDE’s usability, and (3) an estimate on the in-
fluence an RDE has had on the robotics field (i.e., its impact),
which is gauged by the breadth of publications from different
research areas (as listed at the end of each description from
Section 2) and the number of other RDEs that provide inter-
operability interfaces with a system. A researcher examining
a group of RDEs to find one that best fits their needs might
conduct evaluations using either qualitative or quantitative
measures.

A qualitative evaluation is highly contingent on the user’s
purpose; on the one hand, very specific capabilities may be
required, while on the the other, needs may be highly abstract
or only loosely defined. For instance, an application designer
who has a large body of already written Octave software and
desires to use it with a robot might look at the system descrip-
tions in Section 2 and find that MARIE already has an Octave
plug-in. Conversely, educators establishing an “Introduction
to Robotics” class might consider the items from the usabil-
ity evaluation in Section 5 to be of overriding importance; an
examination of the values given to the documentation criteria
(U1.1, U2.1, and U3.1) might lead them to limit attention to
Player/Stage, Pyro, and CARMEN.

More likely, however, is that a mixture of characteristics
is desired. For example, a developer might require a sys-
tem that provides a simulated environment and a fair level
of distribution facilities, with a preference for a system that
supplies extensive GUI capabilities and usability oriented to-
wards non-programmers. An examination of Section 4 would
lead to considering criteria F2.3 (Simulator), F3.4 (Distribu-
tion Mechanisms), F4.1.2 (High-level Language), and F4.1.5
(Graphical Interface), while Section 5 would U2.4 (Graph-
ical Tools) and U3.1–U3.7 (High-level Usability), making
MissionLab the most likely choice.

To arrive at a quantitative evaluation, an assignment of
values to criteria must be made, which can then be applied
to a selection (or all) of the criteria. To arrive at numerical
comparison scores, the three categories of criteria mentioned
above are retained, yielding a feature score F, usability score
U, and impact score I, which can be summed to give a total
score T. Within each category, values of 0 or 2 are assigned
to binary-valued criteria and values of 0, 1, or 2 to ternary-
valued criteria (listing features are not scored).9

In formal terms, the selected RDEs form the set S =
{TB, AR, P/S, Py, C, ML, AD, Mi, MA} and are assigned a
score that is the sum of the category scores F, U , and I. Given
a number of individual criteria within each category (e.g.,
F1.1 denotes Architectural Primitives, while U1.1 denotes In-
stallation Documentation), category scores are comprised of
the sum of individual criteria values Fi , U j , and Ik , where
m, n, and o are the total number of feature, usability, and im-
pact criteria and 1 ≤ i ≤ m, 1 ≤ j ≤ n, and 1 ≤ k ≤ o. In
the simplest case, where all criteria are given equal weight,
the RDE comparison scores are given by the formula:

Ts∈S ←
m∑

i=0

Fs
i +

n∑

i=0

U s
i +

o∑

i=0

I s
i

Should a quantitative evaluation that weights some categories
or criteria more or less than others be desired, weights can
be assigned at both a coarse-grained level (for each category,
α, β, and γ ) and a fine-grained level (for each criterion within
a category, WFi , WU j , and WIk ). The resultant formula for
establishing the total comparison scores is:

Ts∈S ← α

m∑

i=0

WFi Fs
i + β

n∑

i=0

WUi U
s
i + γ

o∑

i=0

WIi I s
i

where α + β + γ = 3,
∑

WFi = m,
∑

WUi = n, and∑
WIi = o. This method will give an objective comparison

in that scores are not biased for or against any particular
RDE, although the choice of features and their assigned
weights are based on the particular application requirements.

The quantitative evaluation that does not weight any cri-
teria or category more than another follows, supplemented
by a discussion of each category score and the totals. The
tabulated scores are shown in Tables 4, 5, and 6, respectively,
and summarized in Table 7.

MARIE and ADE have the highest score (44 and 43,
respectively) in terms of the Feature score F. The Implemen-
tation category contributes more than half of the F score,
exerting the largest influence. This is quite acceptable, as it
corresponds to the expectation that the purpose of an RDE

9 Binary and ternary values range from 0 to 2 so as to not introduce a
bias towards ternary criteria.
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Table 4 The raw Feature score F and %, broken down by categories from Section 4 for each RDE

Feature category
Specification (6) Platform (6) Infrastructure (16) Implementation (30) Total (58)

RDE Score % Score % Score % Score % Score %

TB 5 83 1 17 0 0 10 33 16 28
AR 4 67 2 33 6 38 14 47 26 45
P/S 3 50 5 83 9 56 17 57 34 59
Py 5 83 5 83 5 31 22 73 37 64
C 4 67 5 83 8 50 10 33 27 47
ML 6 100 4 67 10 63 15 50 35 60
AD 6 100 3 50 16 100 18 60 43 74
Mi 5 83 3 50 9 56 14 47 31 53
MA 5 83 6 100 10 63 23 77 44 76

is to provide appropriate tools and abstractions that facilitate
application development. MARIE and Pyro have the highest
implementation scores (23 and 22), indicative of their wide
selection of components (partially due to its interoperabil-
ity with other RDEs) and advanced GUI capabilities. Pyro
is assigned the third highest F score (37) due to the Infras-
tructure category, which accounts for over 25% of the final
score. ADE, which has a score of 18 in the implementation
category, ends up with the highest F score (43) due to the
infrastructure category, as it the only RDE that earns a well
supported value for each criterion therein.

Of particular note is the fact that the RDEs with the highest
scores (Pyro, ADE, and MARIE) all have explicit interop-
erability interfaces with other systems. While providing a
boost in total feature score, we also note that this makes
them reliant, to some degree, on the availability of the other
systems for certain features, in addition to potentially affect-
ing their stability (in that changes to the other RDEs may
impact their operation). We also note again that comparing
RDEs in terms of F alone does not provide a full picture
of evaluation, leaving out aspects such as system usability,
discussed next.

As noted in Section 3, an appropriate set of criteria must
be considered to serve as the basis for comparing RDEs. Not
only do applications have markedly different characteristics
that may impact the designer’s choice of RDE, but users
tend to have different needs and working styles. The
Usability score U attempts to address the practical aspects
of RDE usage by adding criteria relevant for the actual
implementation and execution of robotic architectures (in
particular, the two classes of tasks described in the previous
section), the results of which are summarized in Table 5.

Pyro, Player/Stage, ADE, and MissionLab have the high-
est usability scores (30, 28, 26, and 24, respectively). From
a usability point of view, this indicates that each has ful-
filled their stated purpose: Pyro is aimed at novice users for
educational purposes, Player/Stage is a flexible and adapt-
able programming interface, ADE combines robotic devel-

Table 5 The raw Usability score U and %, broken down by categories
from Section 5 for each RDE (a † indicates some criteria were not
included)

Usability category
Installation

(8)
“Low-level”

(12)
“High-level”

(14)
Total
(34)

RDE Score % Score % Score % Score %

TB† 8 100 4 33 na na 12 35
AR 7 88 7 58 4 29 18 53
P/S 8 100 9 75 11 79 28 82
Py 8 100 11 92 11 79 30 88
C 6 75 8 67 6 43 20 59
ML 3 38 8 67 13 93 24 71
AD 6 75 10 83 10 71 26 76
Mi 2 25 4 33 4 29 10 29
MA 3 38 4 33 10 71 17 50

opment with a MAS infrastructure, while MissionLab pro-
vides military personnel with non-programming methods of
controlling robots. On the other hand, the low score given to
Miro can be attributed to its reliance on the ACE/TAO com-
munication framework10 and incomplete documentation. In
addition, it is necessary to point out that both ARIA and
MissionLab’s scores would be higher if the restriction to
open-source components was lifted.

It is interesting to note that MissionLab and MARIE have
the widest discrepancy in score between usability categories,
each scoring relatively highly for “high-level” usability but
low on the “low-level” architecture. Personal experience
determined that much of the difference can be attributed
to predefined components (both their number and usage)
and their integration into a cohesive user interface. Both
provide a comprehensive graphical method for connecting

10 The impact of ACE/TAO is acknowledged in the user manual thusly:
“The CORBA environment and the Miro framework seem to raise the
bar for an easy entry into robot programming. While this can hardly
be denied they facilitate tremendously the task of writing distributed
programs.”
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Table 6 The raw Impact score I and % for each RDE, the sum of “Application Area References” citations from Section 2 and the other RDEs
that provide interoperability interfaces

Application area TB AR† P/S Py C ML AD Mi MA

SLAM
√ √ √

Planning/Navigation
√ √ √

Learning
√ √ √ √ √

Hierarchical behavior
√ √ √ √

Education
√ √ √ √

HRI — task allocation
√ √ √ √

HRI — learning

HRI — Assistive Robotics
√ √ √ √

Multi-robot Sensing
√ √ √

Multi-robot Exploration
√

Multi-robot Mapping
√

Multi-robot Localization
√ √

Multi-robot Planning
√ √

Multi-robot Coordination
√ √ √ √ √ √

Multi-robot Formation
√ √ √

Multi-robot Task Allocation
√ √

Research areas (out of 16) 2 0† 12 3 4 7 6 6 7
Interoperability facilities 0 2 4 0 1 0 0 0 0
Total score (out of 20) 2 2† 16 3 5 7 6 6 7
Total % 10 10† 80 15 25 35 30 30 35

a † indicates some criteria were not included.

Table 7 The Total comparison score T and % for each RDE, com-
prised of the sum of feature F, usability U, and impact I scores. The
left-hand columns under the Removed † Criteria heading do not include

criteria unevaluated for any RDE, while columns under the All Criteria
include all criteria, using a value of zero for unevaluated items

Score
Removed † criteria All criteria

F (58) U (20) I (4) Total (82) F (58) U (34) I (20) Total (112)
RDE Raw % Raw % Raw % Raw % Raw % Raw % Raw % Raw %

TB† 16 28 12 60 0 0 28 34 16 28 12 35 2 10 30 27
AR† 26 45 14 70 2 50 42 51 26 45 18 53 2 10 46 41
P/S 34 59 17 85 4 100 55 67 34 59 28 82 16 80 78 70
Py 37 64 19 95 0 0 56 68 37 64 30 88 3 15 70 63
C 27 47 14 70 1 25 42 51 27 47 20 59 5 25 52 46
ML 35 60 11 55 0 0 46 56 35 60 24 71 7 35 66 59
AD 43 74 16 80 0 0 59 72 43 74 26 76 6 30 75 67
Mi 31 53 6 30 0 0 37 45 31 53 10 29 6 30 47 42
MA 44 76 7 35 0 0 51 62 44 76 17 50 7 35 68 61

components, but suffer from either not providing a graphical
interface to all parts of the system (e.g., MARIE requires
shell scripts for startup/shutdown and the definition of
communication channels) or by their orientation towards
very high-level tasks.

Finally, an oblique way to determine the strengths of an
RDE is to establish an Impact score I that reflects the influ-
ence it has had on the robotics field. The number of research
areas in which there are publications serve as an indicator of
successful usage, as does the recognition that widely used

systems are most likely to have other RDEs provide interop-
erability interfaces. Table 6 summarizes the robotics research
subareas and citations given in Section 2 for each RDE, in
addition to giving a count of the number of RDEs that inter-
operate with it. We reiterate that a single publication is used
to satisfy research in any subarea, simply to provide an idea
of the breadth of research areas in which it has been used;
we also note the likelihood that some relevant publications
were not included, as the particular RDE used is sometimes
not mentioned in a publication. Because criteria are all either
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binary in nature or a simple count, total scores are a simple
sum of items, deviating slightly from the previous conven-
tion of assigning 2 points to a

√
. Player/Stage clearly has

had the largest impact, reflected by the fact that its score
(16) is more than double that of the next highest system. It
is also necessary to point out that ARIA’s impact score is
deceptively low (indicated by the † symbol), due to the fact
that the authors were asked not to include references to its
ancestral software.

Two overall comparison scores T† and Tall are shown in
Table 7, where T† does not include criteria that were unevalu-
ated for any RDE and Tall does. Overall scores are the sum of
the feature F, usability U, and impact I scores. Player/Stage
has the highest total score Tall (78 out of a possible 112),
partially due to having the highest I score, even though it had
the fifth highest F score and second highest U score. The
next three highest scoring RDEs (ADE with 75, which had
the highest F score; Pyro with 70, which had the highest U
score; and MARIE with 68, which had the second highest F
score) are all relatively new systems; in addition to provid-
ing some level of interoperability interfaces with other RDEs
(thus capitalizing on prior innovations), we believe that part
of their score can be attributed to identifying areas of ap-
plication development that can be improved, partially based
on the examples of already established RDEs (discussed in
more depth in the next section). Of note is that when the
unevaluated criteria are removed, the top four RDEs (ADE,
Pyro, Player/Stage, and MARIE, respectively) remain the
same.

We reiterate that the total scores T† and Tall may not reflect
the particular requirements of a particular person or group
and that while the evaluations here are comprehensive, they
necessarily miss some criteria that may be important for a
specific designer or application. Such items can be added at
will to further refine and customize the evaluations, adjusting
the evaluation formula given earlier.

6.2 RDE maintainers and developers

The selected RDEs in this survey are, as defined by the
constraints of system selection, open source projects. While
their availability is of obvious benefit to users, individual
RDE maintainers can also potentially reap some benefit by
examining other systems. Hopefully, this will facilitate the
transfer of techniques and tools (e.g., Vaughan et al., 2003;
Montemerlo et al., 2003b; Hattig et al., 2003; Howard and
Roy, 2004) across environments and promote progress in the
field of robotics as a whole. Using the Feature and Usabil-
ity comparison scores from the previous section as a basis
(the Impact score is not considered, as it is not directly con-
trolled by RDE maintainers), it becomes possible to not only
make specific improvement suggestions, but also to make
some high-level points. We note here that no suggestions

are made for TeamBots because it is no longer under active
development.

To begin, we examine the Feature scores shown in
Table 4 by discussing each category. In the Specification
category, all RDEs score at least 50%, while 8 of the 9 score
67% or higher, indicating that all supply adequate support
for application design. Considering the Platform category,
only two systems score less than 50%: TeamBots, which
is no longer being actively developed, and ARIA, which
has been developed in support of a proprietary platform
and thus has unique objectives. Increasing the hardware
support in MissionLab, ADE, and Miro would yield scores
of 67% or higher for all of the remaining systems, such
that all could be considered to have adequate platform
support. In terms of the Implementation category, only
CARMEN and MissionLab score below 50%. Recalling
the information found in Table 2, it is evident that the
score is substantially due to supporting a limited number
of predefined components (although it is important to note
that some components are available with MissionLab if
licensed). ARIA’s score is similarly affected by licensing
issues, in that an integrated GUI is available; inclusion
would put its score at about 60%. ADE, Miro, and MARIE
all have inadequate documentation, which would improve
their Feature score, while also increasing their Usability
scores. The last category factoring into the feature score
is Infrastructure, discussed very briefly here due to its
inclusion in Section 7. ARIA, Pyro, and CARMEN all score
50% or below; again, ARIA’s licensing requirements affect
its score to some degree, leading to a not supported value for
the Monitoring and Management criterion. The most preva-
lent unsupported criterion is Security, which only ARIA and
ADE support at all. As noted earlier, Player/Stage, Miro, and
MARIE all have the potential to easily incorporate security
(Player/Stage by utilizing its authentication mechanism and
Miro/MARIE by leveraging the ACE/TAO framework).
The next least supported criteria are Component Mobility
and Fault-tolerance, related to Distribution Mechanisms.
Suggestions for improvements in these areas is beyond the
scope of this survey, and we again refer to Section 7 for more.

Three categories make up the Usability score, In-
stallation, the “low-level” architecture, and “high-level”
subarchitectures. Three RDEs are at or below 50% in
installation (MissionLab, Miro, and MARIE), three in the
“low-level” category (TeamBots, Miro and MARIE), and
three in the “high-level” category (ARIA, CARMEN, and
Miro). Discounting unavailable software, ARIA’s individual
scores are well distributed among criteria, indicating that
while each could be improved, a good overall mix is
established. MissionLab’s installation score is low due to its
reliance on older versions of gcc; a new release would most
likely greatly improve its score. As with the Implementation
category mentioned above, CARMEN would benefit greatly
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from additional predefined components. Miro’s framework,
relying as it does on CORBA, has great potential in terms
of usability; however, additional tools and documentation
are required to “lower the bar” that, as they say in their
user manual, has been placed quite high. In MARIE’s case,
the lowest individual criteria scores are concentrated in the
“low-level” architecture. In particular, the necessity of man-
ually specifying component connections lowers usability, as
does what might be considered a high learning curve.

From the above, one broad point that should be clear
is that interoperability tools are of great utility, allowing
one RDE to incorporate any component functionality devel-
oped in another RDE. Interoperability has been discussed
in the literature (e.g., Baum et al., 2002; Nesnas et al.,
2003; Côté et al., 2005), and while no single technique has
been accepted, MARIE’s foundations suggest a direction
for future standards. While Pyro provides a large base of
interoperability tools, MARIE’s stated intention is to pro-
vide a well-grounded framework that is not only compatible
with existing systems, but also provides the conceptual ba-
sis for adding interoperability in the future. The benefits
of this approach are apparent when considering the avail-
able pre-defined component list; components available in
Player/Stage, ARIA, and CARMEN are also available in
Pyro and MARIE.

Finally, to gain acceptance, an RDE must pay attention
to usability and the quality of its user and developer inter-
faces (see Steinfeld, 2004 for a general treatment). An area
that is receiving increasing attention is robotics education.
In addition to opening up the field to new people, an RDE
that caters to novices should, almost by definition, promote
usability. Pyro is particularly strong in this respect. Another
aspect of usability concerns those who are not interested in
going beyond the functionality already provided by an RDE,
but rather use the already established components to imple-
ment their own applications without programming. In this
sense, the FlowDesigner package (related to MARIE) pro-
vides a graphical method for defining data flow throughout
an application. Taking this a step further, MissionLab pro-
vides graphical tools not concerned with robot particulars at
all, but only with their actions. Additionally, the Mission-
Lab developers have conducted many usability studies (e.g.,
MacKenzie and Arkin, 1998; Collins et al., 2000; Endo et al.,
2004; Moshkina et al., 2006) in conjunction with system de-
velopment.

7 Conclusion and outlook

This survey has evaluated nine RDEs with respect to an ex-
tensive set of relatively common criteria supporting the de-
velopment of robotic applications. Results were then com-
piled and used to compare the systems according to three

types of score (Feature, Usability, and Impact), providing
robotic architecture designers with information useful in
picking an RDE for themselves. Finally, the comparisons
provided the foundation for suggesting potential areas of im-
provement to RDE maintainers based on features currently
found in other systems. In conclusion, we extrapolate from
the results and attempt to identify some likely future trends.

The comparison of different RDEs suggests that com-
mon features will increasingly be expected in all systems,
strengthened by the interoperability mechanisms found in
some recent systems (e.g., Pyro and MARIE). In addition to
creating a set of (possibly de facto) standards, this will lead
to an increasing number of predefined components that can
be expected in any given RDE. Furthermore, we expect the
list of predefined components given in Section 3 to continue
to expand, both in relation to high-level functionality (e.g.,
various types of robot control) and more specific low-level
functionality (e.g., “vision processing” will split into sepa-
rate categories such as monocular vs. stereo vision process-
ing). We feel that a similar trend will develop in relation to
RDE infrastructure (see Section 3), such that users expect
inclusion of a suite of tools that implement various non-
architectural functions. This suspicion is borne out by a cur-
sory examination of the origination of RDEs. Early systems
(e.g., TeamBots, 1998) provide little in the way of infras-
tructure: an application in TeamBots is the sum of the Java
classes that implement it. Player/Stage (2001) incorporates a
minimal amount of infrastructure; the authors acknowledge
and deliberately reject this trend, making the system “free
from the computational and programmatic overhead that is
generally associated with the practical application” of such
mechanisms (Gerkey et al., 2003). More recent RDEs, such
as MARIE (2004) and ADE (2004), explicitly incorporate
substantial infrastructure into their design and use, with the
stated aims, respectively, of improving interoperability and
distribution.

The necessity of providing infrastructural interoperability
and distribution is illustrated by a quote from the authors
of the GRACE project (Simmons et al., 2003): “One of the
more difficult parts of the Challenge for us was determining
how to integrate a vast amount of software that had been de-
veloped by the participating institutions, mostly on different
hardware platforms.” Such mechanisms should immediately
bring to mind multi-agent systems (MAS) research, which
has found particular traction in the robotics field in the form
of multi-robot applications (such as the citations listed at the
bottom of Table 6; (see also Sycara and Zeng, 1996; Altmann
et al., 2001; Dias and Stentz, 2003; Gerkey and Matarić,
2004). We suggest that it will be critical for future RDEs to
incorporate other aspects of MAS research, including, but
not limited to security (e.g., Singh and Sycara, 2004) and
system-wide management facilities (such as those discussed
in Bellifemine et al. (1999) and Sycara et al. (2003)).
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A final trend we expect to take shape in RDEs in the
future is the prominent promotion of autonomic computing
functionality (e.g., Bantz et al., 2003). On the one hand,
we expect improvements in low-level system characteristics
that are transparent to users such as fault tolerance (e.g.,
Varakantham et al., 2002; Long et al., 2003; Melchior
and Smart, 2004). ADE, for example, already explicitly
incorporates features for monitoring, relocating, and
restarting of components integrated into its infrastructure.
Moreover, MARIE and Miro can potentially take advantage
of recent advances in middleware, e.g., the Fault Tolerant
CORBA specification (see Chapter 23 in CORBA, 2005),
which incorporates mechanisms that promote robust system
operation. On the other hand, we expect that development
of high-level AI techniques that enhance a robot’s apparent
intelligence will increasingly find inclusion in RDEs, like
the tools found in MissionLab. We expect that robot learning
(e.g., Russell, 2004; Blank et al., 2005), findings from
human-robot interaction (HRI) research (e.g., Salter et al.,
2005; Fong et al., 2006; Moshkina et al., 2006; Scheutz
et al., 2006), and the study of social robotics (e.g., Bruce
et al., 2002; Breazeal, 2003) will become commonplace.

In sum, we believe that the increase in capability of robotic
applications will soon require extensive infrastructure sup-
port, with expanding development of support for autonomic
computing in the future. Such tools and techniques will
be used not only for the development and debugging of
robotic architectures, but also for the execution and main-
tenance of robotic architectures as part of application de-
ployment. If true, the choice of one RDE over another will
be based on more than just the development support of-
fered, but increasingly on the features it provides for the
long-term operation of robotic applications. Furthermore,
and perhaps more significantly, the integration of system in-
frastructure with the development of intelligent robotic archi-
tectures will lead to robots that display ever greater levels of
autonomy.
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Côté, C., Létourneau, D., Michaud, F., and Brosseau, Y. 2005. Software
Design Patterns for Robotics: Solving Integration Problems with
MARIE. Submitted for workshop to ICRA2005.
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Kraetzschmar, G., Sablatnög, S., Enderle, S., Utz, H., Simon, S.,
and Palm, G. 2000, Integration of multiple representations and
navigation concepts on autonomous mobile robots. In H. Groß,
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Lindstrom, M., Orebäck, A., and Christensen, H. 2000, BERRA:
A research architecture for service robots. In Proceedings of

International Conference on Robotics and Automation (ICRA),
Vol. 4, pp. 3278–3283.

Logan, B. 1998. Classifying agent systems. In B. Logan and J. Baxter
(Eds.), Proceedings of AAAI-98 Conference Workshop on
Software Tools for Developing Agents. Menlo Park, California,
American Association for Artificial Intelligence.

Long, M., Murphy, R., and Parker, L. 2003. Distributed multi-agent di-
agnosis and recovery from sensor failures. IEEE/RSJ International
Conference on Intelligent Robots and Systems, 3:2506–2513.

Lucas, G. 2004. The Rossum Project. http://rossum.sourceforge.net/.
MacDonald, B., Yuen, D., Wong, S., Woo, E., Gronlund, R., and Col-

lett, T. 2003. Robot programming environments. In ENZCon2003
10th Electronics New Zealand Conference. University of Waikato,
Hamilton.

MacKenzie, D. and Arkin, R. 1993, Nov. Formal specification for
behavior-based mobile robots. Mobile Robots VIII, pp. 94–104.

MacKenzie, D. and Arkin, R. 1998. Evaluating the usability of robot
programming toolsets. The International Journal of Robotics
Research, 17(4):381–401.

MacKenzie, D., Arkin, R., and Cameron, J. 1997. Multiagent mission
specification and execution. Autonomous Robots, 4(1):29–52.

Maes, P. 1990. Situated agents can have goals. In P. Maes (Ed.),
Designing Autonomous Agents. MIT Press, pp. 49–70.

Mallet, A., Fleury, S., and Bruyninckx, H. 2002. A specification
of generic robotics software components: future evolutions of
GenoM in the Orocos context. In International Conference on
Intelligent Robotics and Systems, IEEE.
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